• 제목/요약/키워드: autonomous navigation

검색결과 857건 처리시간 0.021초

면역 알고리즘을 이용한 쿼드로터 장애물회피 기술 (An Obstacle Avoidance Technique of Quadrotor Using Immune Algorithm)

  • 손병락;한창섭;이현;이동하
    • 대한임베디드공학회논문지
    • /
    • 제9권5호
    • /
    • pp.269-276
    • /
    • 2014
  • In recent, autonomous navigation techniques to avoid obstacles have been studied by using unmanned aircraft vehicles(UAVs) since the increment of UAV's interest and utilization. Particularly, autonomous navigation based UAVs are utilized in several areas such as military, police, media, and so on. However, there are still some problems to avoid obstacle when UVAs perform autonomous navigation. For instance, the UAV can not forward in the corner of corridors even though it utilizes the improved vanish point algorithm that makes an autonomous navigation system. Therefore, in this paper, we propose an obstacle avoidance technique based on immune algorithm for autonomous navigation of Quadrotor. The proposed algorithm is consisted of two steps such as 1) single color discrimination and 2) multiple color discrimination. According to the result of experiments, we can solve the previous problem of the improved vanish point algorithm and improve the performance of autonomous navigation of Quadrotor.

무선 네트워크 기반 자율주행 시스템 설계 (Design of Autonomous Navigation Systems based on Wireless Networks)

  • 박혜공;이형근;권순학
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.435-440
    • /
    • 2012
  • 최근 산업 현장에서 자율주행 시스템에 관한 관심이 날로 증대되고 있다. 자율이동 로봇을 포함한 자율주행 시스템은 인간의 지속적인 도움 없이 거칠고 변화하며 구조화되지 않으면서도 불확실한 주변 환경에서 원하는 작업을 수행할 수 있는 능력을 지녀야 한다. 이를 위해서 근거리 무선통신 네트워크로 로봇 간 서로 교신을 하여 위치 및 상태 등의 정보를 공유를 통해 원만한 자율 주행을 할 수 있는 시스템의 설계가 요구된다. 본 논문에서는 센서 네트워크 및 무선네트워크에 기반한 자율주행 시스템을 개발하고 실험을 통하여 개발된 시스템의 성능을 검증한다.

자율운항지원 서비스 전시시스템 개념 연구 (Conceptual Research on a Display System for Autonomous Navigation Assistance Service)

  • 정무웅;신일식
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.447-448
    • /
    • 2022
  • 자율운항선박에 대한 연구가 활발히 진행되면서 관련 연구가 많은 관심을 받았으나, 국제해사기구(IMO)에서 제안한 Maritime Service Portfolio(MSP)의 2번째 항목인 항해지원서비스(NAS)에 대한 자율운항지원 서비스 연구는 진행되지 않았다. 따라서, 본 논문에서 자율운항지원 서비스를 위한 정보 항목을 도출하고, 해당 정보를 선상 전자해도시스템에 전시하기 위한 전시시스템을 연구한다.

  • PDF

인공 면역망과 퍼지 시스템을 이용한 자율이동로봇 주행 (Autonomous Mobile Robot Navigation using Artificial Immune Networks and Fuzzy Systems)

  • 김양현;이동제;이민중;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권9호
    • /
    • pp.402-412
    • /
    • 2002
  • The navigation algorithms enable autonomous mobile robots to reach given target points without collision against obstacles. To achieve safe navigations in unknown environments, this paper presents an effective navigation algorithm for the autonomous mobile robots with ultrasonic sensors. The proposed navigation algorithm consists of an obstacle-avoidance behavior, a target-reaching behavior and a fuzzy-based decision maker. In the obstacle-avoidance behavior and the target-reaching behavior, artificial immune networks are used to select a proper steering angle, make the autonomous mobile robot avoid obstacles and approach a given target point. The fuzzy-based decision maker combines the steering angles from the target-reaching behavior and the obstacle-avoidance behavior in order to steer the autonomous mobile robot appropriately. Simulational and experimental results show that the proposed navigation algorithm is very effective in unknown environments.

실시간 주행성 분석에 기반한 6×6 스키드 차량의 야지 고속 자율주행 방법 (A High-Speed Autonomous Navigation Based on Real Time Traversability for 6×6 Skid Vehicle)

  • 주상현;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.251-257
    • /
    • 2012
  • Unmanned ground vehicles have important military, reconnaissance, and materials handling application. Many of these applications require the UGVs to move at high speeds through uneven, natural terrain with various compositions and physical parameters. This paper presents a framework for high speed autonomous navigation based on the integrated real time traversability. Specifically, the proposed system performs real-time dynamic simulation and calculate maximum traversing velocity guaranteeing safe motion over rough terrain. The architecture of autonomous navigation is firstly presented for high-speed autonomous navigation. Then, the integrated real time traversability, which is composed of initial velocity profiling step, dynamic analysis step, road classification step and stable velocity profiling step, is introduced. Experimental results are presented that demonstrate the method for a $6{\times}6$ autonomous vehicle moving on flat terrain with bump.

Development of an Autonomous Navigation System for Unmanned Ground Vehicle

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • 대한임베디드공학회논문지
    • /
    • 제3권4호
    • /
    • pp.244-250
    • /
    • 2008
  • This paper describes the design and implementation of an unmanned ground vehicle (UGV) and also estimates how well autonomous navigation and remote control of UGV can be performed through the optimized arbitration of several sensor data, which are acquired from vision, obstacle detection, positioning system, etc. For the autonomous navigation, lane detection and tracing, global positioning, and obstacle avoidance are necessarily required. In addition, for the remote control, two types of experimental environments are established. One is to use a commercial racing wheel module, and the other is to use a haptic device that is useful for a user application based on virtual reality. Experimental results show that autonomous navigation and remote control of the designed UGV can be achieved with more effectiveness and accuracy using the proper arbitration of sensor data and navigation plan.

  • PDF

전역 초음파 시스템을 이용한 이동 로봇의 자율 주행 (Autonomous Navigation of Mobile Robot Using Global Ultrasonic System)

  • 황병훈;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.529-536
    • /
    • 2004
  • Autonomous navigation of an indoor mobile robot using the global ultrasonic system is presented in this paper. Since the trajectory error of the dead-reckoning navigation grows with time and distance, the autonomous navigation of a mobile robot requires to localize the current position of the robot, so that to compensate the trajectory error. The global ultrasonic system consisting of four ultrasonic generators fixed at a priori known positions in the work space and two receivers on the mobile robot has the similar structure with the well-known satellite GPS(Global Positioning System), and it is useful for the self-localization of an indoor mobile robot. The EKF(Extended Kalman Filter) algorithm for the self-localization is proposed and the autonomous navigation based on the self-localization is verified by experiments.

준실시간 해상교통 정보를 반영한 자율운항 알고리즘 검증용 시뮬레이션 시스템 개발 (Simulation System Development for Verification of Autonomous Navigation Algorithm Considering Near Real-Time Maritime Traffic Information)

  • 박한솔;한정욱
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.473-481
    • /
    • 2023
  • In this study, a simulation system was developed to verify autonomous navigation algorithm in complex maritime traffic areas. In particular, real-world maritime traffic scenario was applied by considering near real-time maritime traffic information provided by Korean e-Navigation service. For this, a navigation simulation system of Unmanned Surface Vehicle (USV) was integrated with an e-Navigation equipment, called Electronic Chart System (ECS). To verify autonomous navigation algorithm in the simulation system, initial conditions including initial position of an own ship and a set of paths for the ship to follow are assigned by an operator. Then, considering real-world maritime traffic information obtained from the service, the simulation is implemented in which the ship repeatedly travels by avoiding surrounding obstacles (e.g., approaching ships). In this paper, the developed simulation system and its application on verification of the autonomous navigation algorithm in complex maritime traffic areas are introduced.

Development of Computer-based Remote Technologies and Course Control Systems for Autonomous Surface Ships

  • Melnyk, Oleksiy;Volianska, Yana;Onishchenko, Oleg;Onyshchenko, Svitlana;Kononova, Olha;Vasalatii, Nadiia
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.183-188
    • /
    • 2022
  • Recently, more and more researches aimed at the development of automated and autonomous ships are appearing in the scientific environment. One of the main reason is the need to solve the problems of safe navigation and reducing accidents due to human factor, as well as the ever-increasing problem associated with the lack of qualified maritime personnel. Development of technologies based on application of artificial intelligence also plays important role, after all for realization of autonomous navigation concept and enhancement of ship automatic maneuvering processes, advancement of maneuvering functions and elaboration of specific algorithms on prevention of close quarter situations and dangerous approach of ships will be required. The purpose of this work is the review of preconditions of occurrence of the autonomous ship navigation conception, overview of introduction stages and prospects for ship remote control based on unmanned technologies, analysis of technical and intellectual decisions of autonomous surface ships, main research tendencies. The research revealed that the technology of autonomous ship navigation requires further development and improvement, especially in terms of the data transmission protocols upgrading, sensors of navigation information and automatic control systems modernization, which allows to perform monitoring of equipment with the aim of improving the functions of control over the autonomous surface ship operation.

전동휠체어의 자유주행을 위한 실시간 제어 구조의 개발 (Development of Real-Time Control Architecture for Autonomous Navigation of Powered Wheelchair)

  • 김병국
    • 제어로봇시스템학회논문지
    • /
    • 제10권10호
    • /
    • pp.940-946
    • /
    • 2004
  • In this paper, an efficient real-time control architecture for autonomous navigation of powered wheelchair is developed. Since an advanced intelligent wheelchair requires real-time performance, the control software architecture of powered wheelchair is developed under Linux real-time extension Real-time Application Interface (RTAI). A hierarchical control structure for autonomous navigation is designed and implemented using real-time processe and interrupts handling of sensory perception based on slanted surface LRF, emergency handling capability, and motor control with 0.1 msec sampling time. The performance of our powered wheelchair system with the implemented control architecture for autonomous navigation is verified via experiments in a corridor.