• Title/Summary/Keyword: autonomous guided vehicle(AGV)

Search Result 39, Processing Time 0.025 seconds

Implementation of Pattern Recognition Algorithm Using Line Scan Camera for Recognition of Path and Location of AGV (무인운반차(AGV)의 주행경로 및 위치인식을 위한 라인스캔카메라를 이용한 패턴인식 알고리즘 구현)

  • Kim, Soo Hyun;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • AGVS (Automated Guided Vehicle System) is a core technology of logistics automation which automatically moves specific objects or goods within a certain work space. Conventional AGVS generally requires the in-door localization system and each AGV equips expensive sensors such as laser, magnetic, inertial sensors for the route recognition and automatic navigation. thus the high installation cost is inevitable and there are many restrictions on route(path) modification or expansion. To address this issue, in this paper, we propose a cost-effective and scalable AGV based on a light-weight pattern recognition technique. The proposed pattern recognition technology not only enables autonomous driving by recognizing the route(path), but also provides a technique for figuring out the loc ation of AGV itself by recognizing the simple patterns(bar-code like) installed on the route. This significantly reduces the cost of implementing AGVS as well as benefiting from route modification and expansion. In order to verify the effectiveness of the proposed technique, we first implement a pattern recognition algorithm on a light-weight MCU(Micro Control Unit), and then verify the results by implementing an MCU_controlled AGV prototype.

A Study for Color Recognition and Material Delivery of Distributed Multi Vehicles Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 분산 Multi Vehicle의 컬러인식을 통한 물체이송에 관한 연구)

  • Kim, Hun-Mo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.323-329
    • /
    • 2001
  • In this paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The proposed method reaveals a great deal of improvement on its performance.

A Design of Color-identifying Multi Vehicle Controller for Material Delivery Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 컬러식별 Multi Vehicle의 물류이송을 위한 다중제어기 설계)

  • Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.42-49
    • /
    • 2001
  • In This paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA(Factory Automation) require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead of intricate vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The technique for the proposed method will be demonstrated by experiment.

  • PDF

Velocity Control Method of AGV for Heavy Material Transport (중량물 운송을 위한 AGV의 주행 제어 방법)

  • Woo, Seung-Beom;Jung, Kyung-Hoon;Kim, Jung-Min;Park, Jung-Je;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.394-399
    • /
    • 2010
  • This paper presents to study the velocity control method of AGV for heavy material transport. Generally, in the industries, fork-type AGV using path tracking requires high stop-precision with performing operations for 20 hours. To obtain the high stop-precision of AGV for heavy material transport, AGV requires driving technic during low speed. Hence, we use encoder with keeping the speed of AGV and study the velocity control method to improve for the stop-precision of AGV. To experiment the proposed the velocity control method, we performed the experiments engaging the pallet located 4m in front of the AGV. In the experimental result, the maximum error of stop-precision was less than 18.64mm, and we verified that the proposed method is able to control stable.

Design and Application of AMR Using SLAM and ROS (SLAM과 ROS를 활용한 AMR 설계 및 응용)

  • Cho, Su-Je;Choi, Seoung-Yeol;An, Jae-Yong;Hong, Sung-Su;Choi, Hong-Yong
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1372-1375
    • /
    • 2021
  • 최근 산업 현장에서 많은 안전사고가 일어나고 있고, 현장 노동력의 부족으로 무인 로봇 시스템들을 도입하는 등 다양한 변화를 맞이하고 있다. 이에 차세대 자동화 시스템은 보다 유연하고 지능적이어야 한다. AGV(Automatic Guided Vehicle)의 경우 실시간으로 변하는 현장에 대응하기 어렵고, 새로운 어플리케이션에 대한 제품개발의 어려움이 따른다. 이에 대한 대안으로 AGV 인식 스택을 재구축하여 인간과 동일한 공간인식 능력을 갖춘 AMR(Autonomous Mobile Robot)이 대두되고 있다. 본 연구에서는 SLAM과 ROS를 이용하여 AMR의 기능을 구축하였다. YD Lidar 센서와 SLAM을 이용하여 주변 환경을 지도화 하여 로봇의 현재 위치를 파악할 수 있도록 제작하였고, 직접 지도상의 최적 경로를 파악하여 주변 장애물을 회피하며 주행할 수 있음을 확인하였다. DC 모터의 응답 특성에 따라 주행 속도, 조향각 등을 제어할 수 있도록 구현하였다.

Sensor Data Collecting and Processing System (센서 데이터 수집 및 처리 시스템)

  • Ko, Dong-beom;Kim, Tae-young;Kim, Jeong-Joon;Park, Jeong-min
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.9
    • /
    • pp.259-269
    • /
    • 2017
  • As emerging the '4th Industrial Revolution' by increasing the necessity of the intelligent system recently, 'Autonomic Control System' also has been the important issue. It is necessary to develop the system collecting data of machines and sensors for the autonomic control system to monitor the target system. But it is difficult to collect data because data formats of machines and sensors of the existing factories differ between each manufacturer. Therefore, this paper presents and implements data collecting and processing system that comprise 3 steps including 'ParseBuffer', 'ProcessData' and 'AddToBuffer' by using 'MTConnect' that is standard manufacturing facility data collecting middleware. Through the suggested system, we can get data in a common format usable in an autonomous control system. As a case study, we experimented with the generation and collection of AGV (Automated Guided Vehicle) data, which is an unattended transportation system in the factory. To accomplish this, we defined the data type in accordance with the MTConnect standard and confirmed the data collected through the proposed system.

Vision-Based Self-Localization of Autonomous Guided Vehicle Using Landmarks of Colored Pentagons (컬러 오각형을 이정표로 사용한 무인자동차의 위치 인식)

  • Kim Youngsam;Park Eunjong;Kim Joonchoel;Lee Joonwhoan
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.387-394
    • /
    • 2005
  • This paper describes an idea for determining self-localization using visual landmark. The critical geometric dimensions of a pentagon are used here to locate the relative position of the mobile robot with respect to the pattern. This method has the advantages of simplicity and flexibility. This pentagon is also provided nth a unique identification, using invariant features and colors that enable the system to find the absolute location of the patterns. This algorithm determines both the correspondence between observed landmarks and a stored sequence, computes the absolute location of the observer using those correspondences, and calculates relative position from a pentagon using its (ive vortices. The algorithm has been implemented and tested. In several trials it computes location accurate to within 5 centimeters in less than 0.3 second.

Traffic Analysis of a CAN-based Control System

  • Kim, Dae-Won
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.35-42
    • /
    • 2001
  • This paper deals with an architecture of network-based control system using the CAN(Controller Area Network) protocol and its traffic analysis. It is difficult to determine an optimal network-based control architecture for a specific AGV(Autonomous Guided Vehicle) system with a manipulator arm. The fixed number of periodic messages to be occurred is pre-defined in the system. To determine whether the proposed system architecture is effective or not, we perform traffic analysis for the real-time communication of all messages. Through simulations, the range of transmission speed is found satisfying required conditions and the permissible number of additional sensors is investigated for improving the system performance, when the sampling periods of analog sensors are determined under fixed condition that the transmission speed is over 500Kbps.

  • PDF

Development of Walking Assistive System using Body Weight Supporting and Path Planning Strategy (인체 자중 보상 및 로봇 경로계획법을 이용한 이동형 보행 재활 시스템 개발)

  • Yu, Seung-Nam;Shon, Woong-Hee;Suh, Seung-Whan;Lee, Sang-Ho;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.939-947
    • /
    • 2010
  • With the rising numbers of elderly and disabled people, the demand for welfare services using a robotic system and not involving human effort is likewise increasing. This study deals with a mobile-robot system combined with a BWS (Body Weight Support) system for gait rehabilitation. The BWS system is designed via the kinematic analysis of the robot's body-lifting characteristics and of the walking guide system that controls the total rehabilitation system integrated in the mobile robot. This mobile platform is operated by utilizing the AGV (Autonomous Guided Vehicle) driving algorithm. Especially, the method that integrates geometric path tracking and obstacle avoidance for a nonholonomic mobile robot is applied so that the system can be operated in an area where the elderly users are expected to be situated, such as in a public hospital or a rehabilitation center. The mobile robot follows the path by moving through the turning radius supplied by the pure-pursuit method which is one of the existing geometric path-tracking methods. The effectiveness of the proposed method is verified through the real experiments those are conducted for path tracking with static- and dynamic-obstacle avoidance. Finally, through the EMG (Electromyography) signal measurement of the subject, the performance of the proposed system in a real operation condition is evaluated.