• Title/Summary/Keyword: automotive radar

Search Result 115, Processing Time 0.022 seconds

Development Based on Signal Processing Platform for Automotive UWB Radar System (차량용 UWB 레이다를 위한 DSP 기반의 신호처리 모듈 플랫폼 개발)

  • Ju, Yeonghwan;Kim, Sang-Dong;Lee, Jong-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.5
    • /
    • pp.319-325
    • /
    • 2011
  • Recently, collision avoidance systems are under development to reduce the traffic accidents and driver comfort for automotive radar. Pulse radar can detect their range and velocities of moving vehicles using range gate and FFT(Fast Fourier Transform) of the doppler frequency. We designed the real time DSP(Digital Signal Processing) based automotive UWB(Ultra Wideband) radar, and implemented DSP to detect the range and velocity within 100ms for real time system of the automotive UWB radar. We also measured the range and velocity of a moving vehicle using designed automotive UWB radar in a real road environment.

The Interference Impact between Automotive Radar and Radio Astronomy Service (차량용 레이더와 전파 천문 업무 사이의 간섭영향 연구)

  • Yun, Hyeju;Lee, Ilkyoo;Chung, Yongjun
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.53-58
    • /
    • 2014
  • The global automotive radar is regulated to use the 22GHz~26GHz band. However, it plans to move to the 77~81GHz band of a broadband radar in the millimeter wave for the high resolution of pedestrian sensing and blind spot. On the other hand, the 71~275GHz band is regulated to use a radio astronomy service. The interference is predicted between an automotive radar and a radio astronomy service. Therefore, this paper analyzed the interference impact of the automotive radar on the radio astronomy service and then obtained separation distance for the protection of the radio astronomy service.

Application and Analysis of 1D FRI (Finite Rate of Innovation) Super-resolution Technique in FMCW Radar (FMCW 레이더에서의 1D FRI (Finite Rate of Innovation) 초고해상도 기법 적용 및 분석)

  • Yoo, Kyungwoo;Kong, Seung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.31-39
    • /
    • 2014
  • Recently, as Intelligent Transportation System (ITS) and self-driving system become influential in the ground transportation system, automotive radar systems have been actively studied among the various radar systems to implement the vehicle collision detection system and distance measurement system between vehicles. Most of the automotive radars are Frequency Modulated Continuous Wave (FMCW) radar type which can calculate distance and velocity of target by estimating the frequency difference between the transmitted signal and received signal. Therefore, accurate frequency estimation is very important in the FMCW radar system. For this reason, to improve the measurement accuracy of the FMCW radar, Reverse Directional FRI (RD-FRI) Super-Resolution technique which has high frequency estimation accuracy is applied to the FMCW radar system. The feasibility of the proposed technique is evaluated with simulation results and compared with FFT and conventional Super-Resolution techniques. The simulation results show that the proposed technique estimates the frequency with high accuracy and the distance with centimeter accuracy.

A Case Study on Rainfall Observation and Intensity Estimation using W-band FMCW Radar (W밴드 FMCW 레이더를 이용한 강우 관측 및 강우 강도 추정 사례 연구)

  • Jang, Bong-Joo;Lim, Sanghun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1430-1437
    • /
    • 2019
  • In this paper, we proposed a methodology for estimating rainfall intensity using a W-band FMCW automotive radar signal which is the core technology of autonomous driving car. By comparing and analyzing the results of rainfall and non-rainfall observation, we found that the reflection intensity of the automotive radar is changed with rainfall intensity. We could confirm the possibility of deriving the quantitative precipitation estimation using the methodology derived from this result. In addition it can be possible to develop a new paradigm of precipitation observation technique by observing various events together with the weather radar and the ground rainfall observation equipment.

Architecture of Signal Processing Unit to Improve Range and Velocity Error for Automotive FMCW Radar (FMCW 레이더의 거리 및 속도 오차 향상을 위한 신호처리부 하드웨어 구조 제안)

  • Hyun, Eu-Gin;Lee, Jong-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.54-61
    • /
    • 2010
  • In this paper, we design the signal processing unit to effectively support the proposed algorithm for an automotive Frequency Modulation Continuous Wave(FMCW) radar. In the proposed method, we can obtain the distance and velocity with improved error depending on each range(long, middle, and short) of the target. Since a high computational capacity is required to obtain more accurate distance and velocity for target in near range, the proposed signal processing unit employs the time de-interleaving and the frequency interpolation method to overcome the limitation. Moreover, for real-time signal processing, the parallel architecture is used to extract simultaneously the distance and velocity in each range.

Development of Human Detection Algorithm for Automotive Radar (보행자 탐지용 차량용 레이더 신호처리 알고리즘 구현 및 검증)

  • Hyun, Eugin;Jin, Young-Seok;Kim, Bong-Seok;Lee, Jong-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • For an automotive surveillance radar system, fast-chirp train based FMCW (Frequency Modulated Continuous Wave) radar is a very effective method, because clutter and moving targets are easily separated in a 2D range-velocity map. However, pedestrians with low echo signals may be masked by strong clutter in actual field. To address this problem, we proposed in the previous work a clutter cancellation and moving target indication algorithm using the coherent phase method. In the present paper, we initially composed the test set-up using a 24 GHz FMCW transceiver and a real-time data logging board in order to verify this algorithm. Next, we created two indoor test environments consisting of moving human and stationary targets. It was found that pedestrians and strong clutter could be effectively separated when the proposed method is used. We also designed and implemented these algorithms in FPGA (Field Programmable Gate Array) in order to analyze the hardware and time complexities. The results demonstrated that the complexity overhead was nearly zero compared to when the typical method was used.

Experimental Test and Performance Evaluation of Mid-Range Automotive Radar Systems Using 2D FFT ROI (2D FFT ROI를 이용한 중단거리 차량용 레이더의성능 시험 및 평가)

  • Jonghun, Lee;Youngseok, Jin;Seoungeon, Song;Seokjun, Ko
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we developed a mid-range automotive radar systems based on the performance requirements and test procedures of the intelligent transport systems, that is lane change decision aid systems (LCDAS). The mid-range automotive radar has the maximum detection range up to 80m and an update time within 50ms. The computational loads of a signal processing were reduced by using ROI preprocessing technique. Considering actual driving environments, radar performance evaluations were conducted in two driving scenarios at an automotive proving ground.

Quantitative Analysis of Automotive Radar-based Perception Algorithm for Autonomous Driving (자율주행을 위한 레이더 기반 인지 알고리즘의 정량적 분석)

  • Lee, Hojoon;Chae, HeungSeok;Seo, Hotae;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.29-35
    • /
    • 2018
  • This paper presents a quantitative evaluation method and result of moving vehicle perception using automotive radar. It is also important to analyze the accuracy of the perception algorithm quantitatively as well as to accurately percept nearby moving vehicles for safe and efficient autonomous driving. In this study, accuracy of the automotive radar-based perception algorithm which is developed based on interacting multiple model (IMM) has been verified via vehicle tests on real roads. In order to obtain experimental data for quantitative evaluation, Long Range Radar (LRR) has been mounted on the front of the ego vehicle and Short Range Radar (SRR) has been mounted on the rear side of both sides. RT-range has been installed on the ego vehicle and the target vehicle to simultaneously collect reference data on the states of the two vehicles. The experimental data is acquired in various relative positions and velocity, and the accuracy of the algorithm has been analyzed according to relative position and velocity. Quantitative analysis is conducted on relative position, relative heading angle, absolute velocity, and yaw rate of each vehicle.

An Automotive Radar Target Tracking System Design using ${\alpha}{\beta}$ Filter and NNPDA Algorithm (${\alpha}{\beta}$ 필터 및 NNPDA 알고리즘을 이용한 차량용 레이더 표적 추적 시스템 설계)

  • Bae, JunHyung;Hyun, EuGin;Lee, Jong-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • Automotive Radar Systems are currently under development for various applications to increase accuracy and reliability. The target tracking is most important in single or multiple target environments for accuracy. The tracking algorithm provides smoothed and predicted data for target position and velocity(Doppler). To this end, the fixed gain filter(${\alpha}{\beta}$ filter, ${\alpha}{\beta}{\gamma}$ filter) and dynamic filter(Kalman filter, Singer-Kalman filter, etc) are commonly used. Gating is used to decide whether an observation is assigned to an existing track or new track. Gating algorithms are normally based on computing a statistical error distance between an observation and prediction. The data association takes the observation-to-track pairings that satisfied gating and determines which observation-to-track assignment will actually be made. For data association, NNPDA(Nearest Neighbor Probabilistic Data Association) algorithm is proposed. In this paper, we designed a target tracking system developed for an Automotive Radar System. We show the experimental results of the 77GHz FMCW radar sensor on the roads. Four tracking algorithms(${\alpha}{\beta}$ filter, ${\alpha}{\beta}{\gamma}$ filter, 2nd order Kalman filter, Singer-Kalman filter) have been compared and analyzed to evaluate the performance in test scenario.

A Study on IMM-PDAF based Sensor Fusion Method for Compensating Lateral Errors of Detected Vehicles Using Radar and Vision Sensors (레이더와 비전 센서를 이용하여 선행차량의 횡방향 운동상태를 보정하기 위한 IMM-PDAF 기반 센서융합 기법 연구)

  • Jang, Sung-woo;Kang, Yeon-sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.633-642
    • /
    • 2016
  • It is important for advanced active safety systems and autonomous driving cars to get the accurate estimates of the nearby vehicles in order to increase their safety and performance. This paper proposes a sensor fusion method for radar and vision sensors to accurately estimate the state of the preceding vehicles. In particular, we performed a study on compensating for the lateral state error on automotive radar sensors by using a vision sensor. The proposed method is based on the Interactive Multiple Model(IMM) algorithm, which stochastically integrates the multiple Kalman Filters with the multiple models depending on lateral-compensation mode and radar-single sensor mode. In addition, a Probabilistic Data Association Filter(PDAF) is utilized as a data association method to improve the reliability of the estimates under a cluttered radar environment. A two-step correction method is used in the Kalman filter, which efficiently associates both the radar and vision measurements into single state estimates. Finally, the proposed method is validated through off-line simulations using measurements obtained from a field test in an actual road environment.