• Title/Summary/Keyword: automotive control

Search Result 2,031, Processing Time 0.038 seconds

Analysis of Capillary Flow in Open-Top Rectangular Microchannel (상판이 없는 직사각형 단면의 미세채널에서 모세관 유동 분석)

  • Park, Eun-Jung;Cho, Ji-Yong;Kim, Jeong-Chul;Hur, Dae-Sung;Chung, Chan-Il;Kim, Jung-Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • Our study aims to understand the flow of liquid in an open-top rectangular microchannel that can be used in micro total analysis systems ($\mu$-TAS) because it has advantages in terms of light transmission and energy efficiency. We measured the liquid velocity using particle tracking technique and conducted a simulation with computational fluid dynamics by altering the area of channel cross section and channel length for the capillary-driven flow in the open-top rectangular microchannel. When liquid water drops to an entrance of the fabricated microchannel with a height of 20 μm and a width of 20 ${\mu}m$, it flows along the microchannel by only capillary force. In the wetting behavior of the liquid, important parameters of this flow are channel size, contact angle and liquid properties such as surface tension and viscosity, which are used to control the flow of liquid in the microchannel.

Design Optimization for Kinematic Characteristics of Automotive Suspension considering Constraints (구속조건을 고려한 자동차 현가장치 기구특성의 최적설계)

  • Lee, Chang-Ro;Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.306-311
    • /
    • 2017
  • This paper deals with the design optimization of the kinematic characteristics of an automotive suspension system. The kinematic characteristics of the suspension determine the attitude of the wheels, such as the toe and camber, which not only relates to tire wear during driving, but also greatly affects the control of the vehicle and its stability, which corresponds to the motion performance of the vehicle. Therefore, it is very important to determine the characteristics of the suspension mechanism at the initial stage of the design. In this study, a displacement analysis is performed to determine the kinematic properties of the suspension for the McPherson strut suspension. For this purpose, a set of constraint equations for the joints constituting the suspension mechanism was established and a program was developed to solve them. We also used ADS, a design optimization program, to obtain the desired kinematic characteristics of the suspension. As the design variables for optimization, we used the coordinates of the hard points, which are the points of attachment of the suspension to the vehicle body, and are defined as the summation of the toe-in for the up and down movement of the wheel as the objective function. As the constraint functions, the maximum camber angle and minimum roll center height, which are design requirements, are considered. As a result of this study, it was possible to determine the optimal locations of the hard points that satisfy both constraint functions and minimize the change of the toe-in.

Designing an evaluation model for cyber security management system implementation for companies participating in the automobile supply chain (based on ISO/SAE 21434 standard and TISAX assessment requirements) (자동차 공급망 참여기업 대상 사이버보안 관리체계 구현 평가모델설계 (ISO/SAE 21434 표준 및 TISAX 평가 요구사항을 기반으로))

  • Baek Eun Ho
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.49-59
    • /
    • 2022
  • Cyber security in the automobile sector is a key factor in the life cycle of automobiles, and cyber security evaluation standards are being strengthened worldwide. In addition, not only manufacturers who design and produce automobiles, but also due to the nature of automobiles consisting of complex components and various parts, the safety of cybersecurity can be secured only when the implementation level of the cybersecurity management system of companies participating in the entire supply chain is evaluated and managed. In this study, I analyzed the requirements of ISO/SAE 21434 and TISAX, which are representative standards for evaluating automotive cybersecurity. Through a survey conducted on domestic/overseas company security officers and related experts, suitability and feasibility were reviewed according to priorities and industries, so 6 areas and 45 evaluation criteria were derived and presented as final evaluation items. This study is meaningful as a study in that it presented a model that allows companies participating in the automotive supply chain to evaluate the current cybersecurity management level of the company by first applying ISO/SAE 21434 and TISAX overall control processes before uniformly introducing them.

Modeling and Implementation of the Affordance-based Human-Machine Collaborative System (어포던스 기반의 인간-기계 협업 모델을 이용한 제조 시스템 구현 연구)

  • Oh, Yeong Gwang;Ju, Ikchan;Lee, Wooyeol;Kim, Namhun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.34-42
    • /
    • 2015
  • Modeling and control of human-involved manufacturing systems poses a huge challenge on how to model all possible interactions among system components within the time and space dimensions. As the manufacturing environment are getting complicated, the importance of human in the manufacturing system is getting more and more spotlighted to incorporate the manufacturing flexibility. This paper presents a formal modeling methodology of affordance-based MPSG (Message-based Part State Graph) for a human-machine collaboration system incorporating supervisory control scheme for flexible manufacturing systems in automotive industry. Basically, we intend to extend the existing model of affordance-based MPSG to the real industrial application of humanmachine cooperative environments. The suggested extension with the real industrial example is illustrated in three steps; first, the manufacturing process and relevant data are analyzed in perspectives of MABA-MABA and the supervisory control; second, the manufacturing processes and task allocation between human and machine are mapped onto the concept of MABA-MABA; and the last, the affordance-based MPSG of humanmachine collaboration for the manufacturing process is presented with UMLs for verification.

Study of the Robustness Bounds with Lyapunoved-Based Stability Concept

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.700-705
    • /
    • 2005
  • The purpose of this project is the derivation and development of techniques for the new estimation of robustness for the systems having uncertainties. The basic ideas to analyze the system which is the originally nonlinear is Lyapunov direct theorems. The nonlinear systems have various forms of terms inside the system equations and this investigation is confined in the form of bounded uncertainties. Bounded means the uncertainties are with same positive/negative range. The number of uncertainties will be the degree of freedoms in the calculation of the stability region. This is so called the robustness bounds. This proposition adopts the theoretical analysis of the Lyapunov direct methods, that is, the sign properties of the Lyapunov function derivative integrated along finite intervals of time, in place of the original method of the sign properties of the time derivative of the Lyapunov function itself. This is the new sufficient criteria to relax the stability condition and is used to generate techniques for the robust design of control systems with structured perturbations. Using this relaxing stability conditions, the selection of Lyapunov candidate function is of various forms. In this paper, the quadratic form is selected. this generated techniques has been demonstrated by recent research interest in the area of robust control design and confirms that estimation of robustness bounds will be improved upon those obtained by results of the original Lyapunov method. In this paper, the symbolic algebraic procedures are utilized and the calculating errors are reduced in the numerical procedures. The application of numerical procedures can prove the improvements in estimations of robustness for one-and more structured perturbations. The applicable systems is assumed to be linear with time-varying with nonlinear bounded perturbations. This new techniques will be extended to other nonlinear systems with various forms of uncertainties, especially in the nonlinear case of the unstructured perturbations and also with various control method.

  • PDF

Experimental Investigation on Vibration Control Performances of the Piezoelectric Hybrid Mount (압전 하이브리드 마운트의 진동제어 성능에 대한 실험적 고찰)

  • Han, Young-Min
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.203-209
    • /
    • 2020
  • A hybrid mount featuring rubber element and piezoelectric actuator is devised to reduce vibration when starting a vehicle engine. As a first step, a passive mount adopting rubber element is manufactured and its dynamic characteristics are experimentally evaluated. After evaluating dynamic characteristics of the manufactured inertial piezoelectric actuator, the proposed hybrid mount is then established by integrating the piezoelectric actuator with the rubber element for performance improvement at non-resonant high frequencies. A mathematical model of the established active vibration control system is formulated and expressed in the state space form. Subsequently, sliding mode controller (SMC) is designed to attenuate the vibration transmitted from the base excitation. Finally, control performances of the proposed hybrid mount are evaluated such as transmissibility in frequency domain and time responses.

Net Shaping Process to Minimize Cutting amount of Turbocharger Control Plate (터보차저 컨트롤 플레이트의 절삭량 최소화를 위한 정형공정)

  • Yoon, Pil-Hwan;Lee, Seon-Bong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.53-61
    • /
    • 2017
  • Turbocharger is a device for increasing the power of a vehicle engine. The control plate is the main component for fixing the vane of the turbocharger. Now, the control plate is made of austenite steel cutting after the casting process. It has excellent corrosion, heat resistance and mechanical characteristics of material. However, present the process is made by cutting after casting. when cutting is processed after casting, so materials, processing time, and processing energy are lost. Therefore, this study proposes a process to powder compact use of stainless steel Deklak2 and to minimize amount of cutting through net shape process. The mechanical properties of Deklak2 were verified by tensile test, hardness test and relative density measurement, and the governed equation was defined. Also, the curvature radius 1, 2 and the density, affects the shape, were selected as the design parameters, and the best process conditions was proposed through the Taguchi method and the evaluation of SN ratio. And then prototype molds were fabricated and compared with the results of the finite element analysis for the verification, and it was found that the tendency of relative density and dimension was coincided. Therefore, it was found that the amount of cutting can be minimized by only the net shape process after the sintering process and it can be applied to mass production.

Air Pollutants Control Technique Trends for Transportation Sources in Korea (우리나라 이동오염원의 제어기술의 동향과 발전방안)

  • Kim, Jeong-Soo;Eom, Myung-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.477-485
    • /
    • 2013
  • The major source of harmful air pollutants in Korea have been shifted as economy grows. Particulate matter(PM) and Sulfur dioxide ($SO_2$) emitted from industries and coal-fired domestic sectors were important pollutants in 1970's and later industrializing period of Korea. Then the characteristic of pollution was changed into so-called "developed country type pollution". Vehicles have been responsible for significant amount of Nitric oxide ($NO_x$) pollution and consequent Ozone formation in urban area since 1990's. Variety of control measures have been introduced to deal with the vehicle emissions in Seoul Metropolitan Area (SMA). Emission control technologies have successfully reduced pollutants from vehicles. Three-way catalyst for vehicles fueled by gasoline and liquefied petroleum gas (LPG), for example, has achieved large amount of pollutants. Compressed natural gas (CNG) urban bus have penetrated existing diesel bus market and reduces PM and $NO_x$ emissions in many Korean cities. However, diesel vehicles are still reaming as a critical emission source of urban area. Diesel vehicles gain more popularity than ever because of their better fuel efficiency and driving power. Unfortunately, it is widely known that the pollutant emissions of diesel vehicles are much larger than those of gasoline and LPG vehicles. In this note, we briefly introduce the trends of emission control strategies which are accomplished by automotive industries for about last ten years. Emission regulation, cleaner fuel, diesel particulate filter (DPF) and other measures are discussed from technical as well as legislative perspectives.

Real Time Pose Control for the Horizontal Maintenance and driving of Mobile Inverted Pendulum (모바일 역진자의 수평유지와 주행을 위한 실시간 자세 제어)

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.157-163
    • /
    • 2011
  • In this paper, configuration control for the Horizontal Maintenance and driving of the mobile inverted pendulum robot has been studied using ARS(Attitude Refrence System). The inverted pendulum technique is getting attention and there have been many researches on the seg-way since the US. Using its 2 freedom, a mobile inverted pendulum robot can move in various modes and Our robot performs goal reaching ARS. Mobile inverted pendulum robot fall down to the forward or reverse direction to converge to the stable point. Kalman Filter is normally used for the algorithm and numerous research is progressing at the moment. To calculate the attitude in ARS using 2 axis gyro(roll, pitch) and 3 axis accelerometers (x, y, z). In this paper we present a two wheel robot system for an autonomous mobile robot. This paper realized the robot control method which is much simpler but able to get desired performance by using the IMU and PID control.

Study on an Evaluation of Remote Control Torch Performance to reduce CO2 Welding Defects (CO2 용접결함 감소를 위한 원격 제어 토치 성능 평가 연구)

  • Kim, Jeong-Hyeok;Oh, Seck-Hyeog;Lee, Hae-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6282-6288
    • /
    • 2014
  • $CO_2$ welding is used widely in the field. On the other hand, welding defects occur when welders cannot adjust the current and voltage needed for welding and have to stop working to adjust the current and voltage, causing sudden cooling down of the welding structure inside a vehicle or tank where the control panel is invisible or when work site is far. This study used three types of existing $CO_2$ welders. This also applied SS400 rolled steel for welding structural purposes for remote control torch welding, perform a welding test through v-groove butt welding with a remote control torch and existing $CO_2$ welding torch, conducted visual inspection on the appearance of a welded top bead. In addition, the appearance quality of the welding part was monitored mainly through penetrant testing and a bending test to evaluate the welding defect reduction and the effect on the performance and compatibility by replacing the existing welder.