• Title/Summary/Keyword: automotive control

Search Result 2,031, Processing Time 0.022 seconds

An Experimental Study on the Flow characteristics in the Plenum Chamber (플레넘 챔버 내의 유동 특성에 관한 실험적 연구)

  • 정재우;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.24-31
    • /
    • 1999
  • The MPI engine becomes increasingly popular because it meets two requirements of stringent pollutant emission and the lower fuel consumption. Even though supplies the same amount of fuel to each cylinder , it is hard to precisely control the air-duel ration due to the different amount of air flowing into each cylinder. The uniformity of air-fuel ration in each cylinder is considerably affected by the plenum chamber configuration . This study is focused on experimentally analyzing the flow characteristics within the plenum chamber In the present experiment , steady and valve dynamic state flow tests are performed and the flow field inside the plenum chamber is visualized and measured by utilizing a laser sheet visualization technique and a PTV method. These measured results indicate that the flow structure in the plenum chamber is highly influenced by the plenum chamber configurations, suction flow rates, crank speeds and so on.

  • PDF

A Study on In-cylinder and Combustion Characteristics of GDI Engine using RCEM (급속 압축팽창 장치를 이용한 직접분사식 가솔린 기관의 실린더 내 분무 및 연소특성에 관한 연구)

  • 조규백;정용일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.76-85
    • /
    • 1999
  • GDI(Gasoline Direct Injection( engine technology is well known as a new technology since it can improve fuel consumption and meet future emission regulations. But the GDI has many difficulties to be solved, such as complexity of injection control mode, unburned hydrocarbon, and restricted power. A 2-D shape combustion chamber was adopted to investigate mixture formation and combustion characteristics of GDI engine. Spray and combustion experiments were performed by changing the injection timing. injection pressure an din-cylinder flow in Rapid Compression and Expansion Machine(RCEM).Through the experiments, the detailed characteristics of fuel spray and combustion was analyzed by visualizing the in-cylinder phenomena according to the change of injection condition, and the optimal fuel injection timing and fuel injection pressure were obtained.

  • PDF

A Study on the System Identification based on Neural Network for Modeling of 5.1. Engines (S.I. 엔진 모델링을 위한 신경회로망 기반의 시스템 식별에 관한 연구)

  • 윤마루;박승범;선우명호;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.29-34
    • /
    • 2002
  • This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.

Performance of Non Punch-Through Trench Gate Field-Stop IGBT for Power Control System and Automotive Application

  • Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.50-55
    • /
    • 2016
  • In this paper, we have analyzed the electrical characteristics of 1200V trench gate field stop IGBT and have compared to NPT planar type IGBT and NPT planar field stop IGBT. As a result of analyzing, we obtained superior electrical characteristics of trench gate field stop IGBT than conventional IGBT. To begin with, the breakdown voltage characteristic was showed 1,460 V and on state voltage drop was showed 0.7 V. We obtained 3.5 V threshold voltage, too. To use these results, we have extracted optimal design and process parameter and designed trench gate field stop IGBT. The designed trench gate IGBT will use to inverter of renewable energy and automotive industry.

Performance sensitivity analysis of feedback system for adaptive control of a vehicle suspension (자동차 현가장치의 적응제어를 위한 feedback 시스템의 성능감도 해석)

  • Park, H;Jeon, E. S.;Oh, J. E.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.35-45
    • /
    • 1991
  • A linear quarter model of a vehicle suspension system is built and simulated. Especially the so-called sensitivity analysis is conducted in order to show its applicability to design problems, and sensitivity function is determined in the frequency domain. The change of frequency response function is predicted, which depends on the design parameter variation and the property is verified by computer simulation. Typical performance measures, namely, sprung mass acceleration, suspension deflection, and tire deflection are examined. The vehicle model is analyzed for ist performance sensitivity as a function of the system's feedback gains. The variable feedback gains are selected as the spring and damping coefficients. Frequency response, RMS response, and performance index of the performance evaluation variables are considered and three-dimensional and contour plots of response surfaces are formed to examine output sensitivity to suspension feedback. Performance trade-offs over the entire frequency spectrum are identified from the FRF, and that between ride quality and handling characteristics are examined from the RMS responses.

  • PDF

A Study on Combustion and Characteristics of Exhaust Gas Properties for Combustion Chamber (연소실 형상에 따른 연소 및 배기가스 배출물 특성에 관한 연구)

  • 김대열;한영출;주신혁;박병완
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.66-73
    • /
    • 2004
  • This paper presents characteristics of combustion and exhaust gas properties according to variation of the combustion chamber for economy and emissions standards. In order to use combustion and exhaust gas properties data, it is necessary to build some data base, which use cylinder pressure sensor and emission tester. A feasibility and necessity of combustion pressure based cylinder spark timing control has been examined. So, this was obtained the coefficient of variation(COV) and the specific fuel consumption(sfc). Using the results of the test, the effects of the variable combustion chamber can be improved combustion stability and be reduced exhaust emission.

A Study on the Improvement of Combustion Stability for SI Engine at Idle Operation (SI 기관의 공회전시 연소 안정성 향상에 관한 연구)

  • Lee, J.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.259-266
    • /
    • 1998
  • In the SI engine, the improvement of combustion stability is important not only for the fuel consumption rate but also for the emission control at idling of engine. Thus the engine speed fluctuation at idle operation mainly comes from cyclic variation of combustion in the SI engine. In this syudy, the improvement of combustion stability for the SI engine at idle condition by the cooling water temperature, duty ratio of ISC, spark ignition timing as well as the reducement of the harmful exhaust gas emission was discussed.

  • PDF

Turbulence Enhancement Characteristics Analysis of Inclined-Tumbles for Various SCV Configurations (SCV형상별 경사텀블유동의 난류증가 특성 해석)

  • Lee, J.W.;Kang, K.Y.;Choi, S.H.;Park, S.C
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.234-242
    • /
    • 1998
  • It has been demonstrated that the in-cylinder turbulence is enhanced by inclined swirl with a SCV(swirl control valve). The inclined-tumble flow measurement and analysis were performed for various types of intake systems that generated several different combinations of swirl ratio and tumble ratio in the cylinder. Experiments were conducted in a 4-valve optically accessed transparent research engine using a backward-scatter LDV mode under motoring condition at 1,000rpm. The influence of swirl/tumble levels on the characteristics of turbulence was analysed. This study presents experimental results of the inclined-tumble flow structure, including the flow motion phenomena, angular momentum and turbulence intensity.

  • PDF

ADJOINT METHOD FOR CONTROLLED CAVITATION INVERSE NOZZLE DESIGN

  • Petropoulou, S.;Gavaises, M.;Theodorakakos, A.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.283-288
    • /
    • 2006
  • A mathematical methodology is proposed for designing nozzle hole shapes producing controlled geometric cavitation. The proposed methodology uses an unstructured RANS flow solver, with the ability to compute sensitivity derivatives via an adjoint algorithm. The adjoint formulation for the N-S equations is presented while variation of the turbulence viscosity is not taken into account during the geometry modifications. The sensitivities are calculated in a mode independently of the shape parameterisation. The method is used to develop and evaluate conceptual shapes for nozzle hole cavitation reduction. The localized region at the hole inlet producing cavitation, is parameterised using its radius of curvature, while a cost function is formulated to eliminate the negative pressures present at this location. Sensitivity derivatives are used to assess the dependence of the localized region on the minimum pressure, and to drive the geometry to the targeted shape. The results show that the computer model can provide nozzle hole entry shapes that produce predefined flow characteristics, and thus can be used as an inverse design tool for nozzle hole cavitation control.

INFLUENCE OF THE MIXING RATIO OF DOUBLE COMPONENTIAL FUELS ON HCCI COMBUSTION

  • Sato, S.;Kweon, S.P.;Yamashita, D.;Iida, N.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.251-259
    • /
    • 2006
  • For practical application on the HCCI engine, the solution of subjects, such as control of auto-ignition timing and avoidance of knocking, is indispensable. This study focused on the technique of controlling HCCI combustion appropriately, changing the mixture ratio of two kinds of fuel. Methane and DME/n-Butane were selected as fuels. The influences, which the mixing ratio of two fuels does to ignition timing, ignition temperature, rate of heat release and oxidation reaction process, were investigated by experiment with 4-stroke HCCI engine and numerical calculation with elementary reactions.