• Title/Summary/Keyword: automotive control

Search Result 2,031, Processing Time 0.031 seconds

Computer analysis of mathematical engine model including emissions (배기가스를 포함하는 수학적 엔진모델의 컴퓨터 해석)

  • 김유남;우광방
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.60-71
    • /
    • 1989
  • In this paper the structure of an engine and its interaction are investigated by a mathematical model for the performance evaluation. The total system is composed of air-fuel inlet element, intake manifold, combustion, engine dynamics and emission. Their control functions are schematically evaluated. Because of the model constructure with general engine functions and computer simulation of the chosen engine, physical characteristics of the corresponding engine and the engine data of normal operation states are used. According to the study, it is possible to predict the mixture rate by the difference in the mass of fuel and air flowing into cylinder and to evaluate and trace dynamic characteristic of operation state under various operating conditions. The model characteristic under the transient operating condition to evaluate operating of actual engine through the result of simulation.

  • PDF

Holistic Scheduling Analysis of a CAN based Body Network System (CAN을 이용한 차체 네트웍 시스템에 대한 Holistic 스케줄링 해석)

  • 신민석;이우택;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.114-120
    • /
    • 2002
  • In a distributed real-time control system, it is essential to confirm the timing behavior of all tasks because these tasks of each real-time controller have to finish their processes within the specified time intervals called a deadline. In order to satisfy this objective, the timing analysis of a distributed real-time system such as shcedulability test must be performed during the system design phase. In this study, a simple application of CAN fur a vehicle body network system is formulated to apply to a holistic scheduling analysis, and the worst-case execution time (WCET) and the worst-case end-to-end response time (WCRT) are evaluated in the point of holistic system view.

Dynamic Model of an HSDI Common-rail Injector and Injection Rate Estimation (HSDI 커먼레일 인젝터 동적 모델 및 분사율 추정)

  • 남기훈;박승범;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.43-49
    • /
    • 2003
  • The common-rail fuel injection system is becoming a common technology for High Speed Direct Injection(HSDI) diesel engines. The injection timing and rate are important factors for combustion control and pollutants formation mechanisms during engine operation. This paper introduces an estimation methodology of the injection timing and rate of a common-rail injector for HSDI diesel engines. A sliding mode observer that is based on the nonlinear mathematical model of the common-rail injector is designed to overcome the model uncertainties. The injector model and the estimator we verified by relevant injection experiments in an injector test bench. The simulation and the experimental results show that the proposed sliding mode observer can effectively estimate the injection rate of the common-rail injector.

A Study on the Development of Icing by Injection of LPG in the Liquid Phase around Injector (I) (LPG 액상 분사 시 인젝터 주위의 Icing 현상에 관한 연구 (I))

  • 김우석;박정철;박심수;유재석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.87-94
    • /
    • 2003
  • Recently, LPLi(Liquied-Phase LPG injection) system is studied for the new stringent emission regulations. But , there are some problems to be solved such as injector tip icing and fuel leakage for LPLi system development. In this paper, the icing problem near injector tip which leads to difficulty of accurate A/F control was studied and reported. Icing of injector tip and port wall was observed at all the cases in this study regardless of injection duration and angle, air humidity change. The spray angle of LPLi was observed approximately two times wider than that of Gasoline injection. This makes the LPLi spray collide with intake port around injector tip. Temperature of the wetted area was decreased and icing of water vapor contained in intake air because of evaporation of the fuel film. The ice of the injector tip and port wall is also affected by the materials related to heat transfer.

Development of a Measurement System of Torsional and Conical Suspension Bushing Rates with the Flexible Jig (유연 지그를 이용한 서스펜션 부싱의 비틀림 및 원추 강성 측정기 개발)

  • 이재곤;박용국;김기대
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.121-127
    • /
    • 2003
  • The stiffness of a bushing in a suspension is extremely important for the overall performance of the suspension system. A new measurement system including the flexible jig was developed to measure the multi-directional stiffness of bushings. To overcome the disadvantage of building each individual jig for each type and size of a bushing, we designed the flexible jig which can accommodate numerous bushings of similar shapes and sizes. Upon using the novel design of the flexible jig in the industry, we could successfully measure the torsional and conical stiffness of many bushings and apply the data for the prediction and evaluation of the performance of a suspension system, which would assist designing the optimal suspension system.

Study of EMB System Using Wedge Structure (웨지 구조를 이용한 전기기계브레이크 시스템 연구)

  • Shin, Dong-Hwan;Kwon, Oh-Seok;Bae, Jun-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.8-18
    • /
    • 2010
  • According to the needs of change to hybrid, fuel cell and electric vehicle, and to the increasing demand for safety and eco-friendliness, the necessity of Electro-Mechanical Brake(EMB) is being increased. But, one of the most important problems for realizing EMB to the practical use is that the required motor power for braking is too high. So the high braking efficient EMB is required. In recent years, the Electronic Wedge Brake(EWB) is noticeable for the high braking efficiency. In this research, we examine the improvable matter of the recent published EWB, and we propose the improved mechanism and the cost effective control method using this mechanism. And we test these feasibility by experiment and discuss these meaning and effect.

Vehicle Stability Analysis using a Non-linear Simplified Model (비선형 단순 모델을 이용한 차량 안정성 해석)

  • Ko, Young-Eun;Song, Chul-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.29-37
    • /
    • 2008
  • Vehicle stability is a very important subject in vehicle design and control, because vehicle safety is closely dependent upon its dynamic stability. For the vehicle stability analysis, the nonlinear vehicle model of a mid-size car with three DOF - longitudinal, lateral and yaw - is employed. A rigorous method is used to determine the vehicle stability region in plane motion. An algorithm is used to materialize a topology theorem, which enables to find the exact stability region. A stability criterion for the critical cornering is proposed.

Study on the Influence of Pre-bending in an Aluminum Tube Hydroforming (알루미늄 튜브 하이드로포밍에서의 예비 굽힘 공정의 효과에 관한 연구)

  • Lim, Hee-Taek;Park, Kyoung-Chang;Kim, Hyung-Jong;Kim, Heon-Young
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.199-206
    • /
    • 2004
  • Recently social demands of fuel economy and environmental regulations require the development of lightweight components and new manufacturing technologies. The aluminum tube hydroforming is a manufacturing process which can provide lightweight components as automotive parts. In this paper, the hydroformability of aluminium tube in different condition of bending process is presented. An investigation has been conducted on how to control the deformed shape and its effect on thinning distribution after hydroforming by using finite element simulation. Finite element simulation of tube hydroforming for automotive trailing arm is carried out to explore the effect of 2-dimensional and 3-dimensional bending.

  • PDF

Design and Verification of Automotive CAN Controller (차량용 CAN 제어기의 설계 및 검증)

  • Lee, Jong-Bae;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.162-165
    • /
    • 2017
  • CAN (controller area network) is a standard real-time serial communication protocol, and it was developed to control various in-vehicle electronic modules. In this paper, a CAN controller was designed in Verilog HDL, based on CAN ver. 2.0A and 2.0B. The designed CAN controller was implemented in FPGA, and it was verified its operation by connecting commercial chips. Its size is about 7,800 gates when synthesized in 0.18um technology.

An Experimental Investigation on the Characteristics of An Automotive Air Spring (자동차 공기스프링의 특성에 대한 실험적 고찰)

  • Lee, J.C.;Liu, H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.2
    • /
    • pp.17-22
    • /
    • 2011
  • The analysis of an air spring characteristics is necessary to design and control automotive air suspension system properly. A mathematical model of an air spring was derived in light of energy conservation first. Then static and dynamic experiments of the air spring have been fulfilled. The static stiffness with various initial pressures and effective areas were obtained from the static experimental results. Theoretical static stiffness obtained by using the mathematical model and effective area data is in close accordance with the experimental estimation. The dynamic experimental results show that the hysteresis in displacement-force cycle decreases when the frequency of the harmonic displacement excitation signal increases, but it does not change too much as the frequency is higher than 1Hz. And the dynamic stiffness goes up with increasing of the initial pressure and the excitation frequency.