• Title/Summary/Keyword: automobile engine

Search Result 404, Processing Time 0.023 seconds

The development of small water-jet propulsion for 150HP grade inboard type (150마력급 선내형 소형 워터제트 추진시스템 개발)

  • Lee, Joong-Seop;Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.246-252
    • /
    • 2014
  • This study is on the development of 150PS inboard type of compact water jet propulsion system. The water jet is composed of intake, impeller, diffuser, reverse bucket and main shaft. Components of water jet have been manufactured through precision processing after sand casting. Development of water jet propelled engine has been finally completed by processes which are design, production and inspection on each component. The water jet performance characteristics show that 0.29 m3/s of maximum flow rate and 37 m/s of flow velocity have been secured in the ground test pool. Field test was performed by 21ft test ship that water jet propulsion equipment developed in this study was installed. As a result, the weight of hull, engine and other parts of the ship has been almost 1.2 ton and 45 km/h of maximum sailing speed has been recorded with 3700 rpm of engine in the domestic coast test.

A Syudy on the High Temprerties of the 5Layer Functionally Gradient Thermal Barrier Coating (5층열장벽 피막의 고온 물성에 관한연구)

  • Han, J. C.;Jung, C.;Song, Y. S.;Yoon, J. K.;Lo, B. H.;Lee, K. H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.12-23
    • /
    • 1998
  • The Thermal Barrier Coating(TBC) has been used to improve the heat barrier and tribological properties of the aircraft engine and the automobile engine in high temperature. Especially, the high temperature tribological propertied of the cylinder haed and the piston crown of diesel engine was emphasized. Therefore, the purpose of this work was to evaluate the microstructure, tribological propeer in high tempearmal shock resistance and bonding strength of five layer functionally gradient TBC for the applications. The five layerwere composed with 100% ceramic insulating later, 75(ceramic):25 (metal) layer, 50:50 layer, 25:75 layer and 100% metal bonding layer to redude the thermal stress. the YSL and MSL poweders were the insulation ceramics powers. The NiCrAly, Inconel625 and SUS powders were the bonding and mixingg powders for plasma spray process. According to the result of high temperature wear test, the wera resistance of YSZ/NiCrAlY siytem was most out standing at 600 and $800^{\circ}C$. At $400^{\circ}C$, the wear resistance of YSZ/Inconel system was better than others. Wear volume at other temperature because of the low temperature degration of zirconia. The thermal shock mechanism of 5 later is the vertical crack gegration in insulating layer. this means that the initial cracks were generated in the top layer, and then developed into the composite layers during thermal shock test. Finally, these cracks werereached to the interface of coating and substrate and also, these vertioal cracks join with the horizontal cracks of the each layers. The bonding strength of YSZ/NiCrAlY and YSZ/Inconel 5 layer system is better than other 5layer systems. The theramal shock resistance of thermal barrier coating s with 5 layer system is better than that of 3 layers and 2 layers.

  • PDF

Analytical Study on Re-solidification Materials(Ammonium Carbonate Intermediates) for NOx Reduction of Exhaust Emissions in Diesel Engine with Solid SCR (디젤엔진 배출가스 질소산화물 저감을 위한 Solid SCR용 Ammonium Carbonate 중간생성물인 재응고 물질의 분석 연구)

  • Shin, Jong Kook;Lee, Hoyeol;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.152-159
    • /
    • 2014
  • Urea solution as a reductant of SCR has been widely used to reduce NOx emissions from diesel engine. But it has lots of problems which are freezing at low temperature due to liquid state, deposition of solid formation in the exhaust, dosing device, and complex package such as mixers for uniform concentration of ammonia. In order to overcome these obstacle, ammonium carbonate which is one of solid ammonium materials to produce ammonia gas directly by sublimation process is considered. Simple reactor with visible widow was designed to predict equilibrium temperature and pressure of ammonium carbonate. To simulate real operation conditions under automobile environment, several cycles of heating and cooling condition were settled, two different re-solidification materials were extracted from the reactor and visible window. Analytical study is performed to characterize these unknown materials by XRD(X-Ray Diffraction), FT-IR(Fourier Transform Infrared Spectroscopy), and EA(Elemental Analyzer). From analytical results, re-solidification materials from heating and cooling cycles are very similar to original material of ammonium carbonate.

An Experimental Study on the Distillation Characteristics of Fuel Used in an Internal Combustion Engine Vehicle (내연기관 자동차에 사용되는 연료의 증류특성에 관한 실험적 연구)

  • Youm, Kwang-Wook;Ham, Seong-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.52-56
    • /
    • 2021
  • With the development of an eco-friendly environment and the automobile industry, research is being actively conducted to increase thermal efficiency and reduce exhaust gas through complete combustion in internal combustion engine vehicles. In particular, research is underway to increase engine load and output by understanding the volatility and combustion characteristics of gasoline, and research is underway to reduce soot and harmful gases and realize optimal efficiency based on the distillation and combustion characteristics of diesel fuel. . Therefore, in this study, based on the contents of KS M ISO 3045 on the distillation test method for petroleum products according to the Korean industrial standard, distillation experiments were conducted based on gasoline and diesel from 4 refineries marketed and used in Korea. The distillation experiment confirmed the correlation with the distillation temperature according to the amount of distillation, and the distillation characteristics were analyzed by comparing the distilled fuel to confirm the suitability of meeting the test standards.

An Analysis of Greenhouse Gas Reduction effect of Automotive Engine Re-manufacturing throug Whole Process Analysis (전과정 분석을 통한 자동차엔진 재제조시 온실가스 저감효과 분석)

  • Ji-Hyoung Park;Han-Sol Lee;Yong-Woo Hwang;Young-Chun Kim;Chung-geun Lee
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.43-51
    • /
    • 2023
  • In this research, through LCA analysis, the environmental impact of automotive engine manufacturing and re-manufacturing was analyzed from the perspective of the entire process, and the greenhouse gas reduction effect was calculated based on this. The amount of greenhouse gas emitted from the process of acquiring and manufacturing raw materials for automotive engines is about 3,473 kg for new manufacturing and 872 kg for re-manufacturing. Thus, the amount of greenhouse gas reduction by engaging in re-manufacturing is about 2,601 kg; the analysis shows a reduction effect in each part of the entire process except for the processing stage. As a result of the LCA weighted analysis, the environmental impact of new product manufacturing was found to be 1.07E+03 Eco-point, and it was 2.67E+02 Eco-point for re-manufacturing. The share of GWP(Global Warming Potential) among the six major impact categories(Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Ozone-layer Depletion Potential, Photochemical Oxidant Creation Potential) as high at 99.72%(new manufacturing) and 99.68%(re-manufacturing).

The Development of Muffler with Controller Sensing Exhaust Gas Pressure in Automobile Exhaust System(1) -The general characteristics of exhaust system and characteristics of control valve- (자동차 배기계의 배기압 감응형 제어 머플러 개발(1) -배기계의 일반 특성과 제어 밸브의 특성-)

  • 이해철;이준서;윤준규;차경옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.37-44
    • /
    • 2001
  • This study is focused on the development of a new muffler. A control valve installed in the exhaust system is operated by torsion springs, and its open angle is controlled automatically corresponding to the engine operating conditions. The experiments were done using an exhaust system simulator having the same pulsation wave frequency and similar pulsation propagation characteristics of a real exhaust system. The purpose of this study is to develop a new muffler system which has improved noise reduction quality and less power loss than conventional mufflers and electronic-control mufflers.

  • PDF

The Strategy Plans for Practical use of Hydrogen Fueled Vehicles in Domestic (국내의 수소 자동차 실용화를 위한 전략 방안)

  • Lee, Kwang-Ju;Lee, Jong-Tae;Yong, Gee-Joong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.346-353
    • /
    • 2010
  • Hydrogen fueled vehicle was evaluated as one of the next-generation technology that will be able to solve the global warming, depletion of fossil fuel and etc. The practical use of hydrogen fueled vehicle, nevertheless, is being delayed more than expected schedule due to various causes. In order to promote the dissemination of hydrogen fueled vehicle, development status and obstacle factors of practical use for hydrogen fueled vehicles were reviewed and the strategy plans for dissemination promotion were proposed. Hydrogen fueled vehicles are included the hydrogen fuel cell, neat and enriched hydrogen fueled engines. The technicalness, economy, safety, cognizance, system, support and etc were considered in the strategy plans.

Transient Response Characteristics of Vehicle Seatbelt (자동차 시트벨트의 과도응답 특성에 관한 연구)

  • Kim, Chang-Hee;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.71-77
    • /
    • 2020
  • In recent years, as a consequence of the technological advancements in the automobile industry and changes in consumer demands, the reduction of noise inside vehicles rather than vehicle performance has increasingly become an important factor of interest. To date, most studies have focused on noise and vibration reduction techniques for the engine and drive system of vehicles. In this research, a comparative analysis for reducing the effect of vehicle seatbelts on the transient response is performed using the test of vehicle conditions and transient response analysis in accordance with seatbelt conditions. After the sensitivity analysis, the specifications for improvement were designed based on the transient response analysis. It was confirmed that the transient response characteristics were improved by the transient response analysis and vehicle conditions test. Through computer-aided engineering, the transient response characteristics of seatbelts were checked with less cost and time.

Improved Performance Through Air Conditioner Outdoor Fan Airflow Increase and Relative Cost Reduction (에어컨 실외기 풍량증가를 통한 성능 향상 및 상대적 원가절감)

  • Kim, Jae-Yeol;Choi, Seung-Hyun;Kim, Sung-Hyun;Ki, Suk-Ho;Yoon, Sung-Un
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.570-574
    • /
    • 2012
  • Spread of household air conditioning system is continued to be increased. Axial fan in the external unit of air conditioning system is for ventilation and air supplying unit, and the related products have been widely adopted as household electronics, automobile engine, big sized blower in factory, tunnel, and subway. In this study, commercial 3-winged propeller fan is modified to shape and modified to 2-winged fan for the airflow increase and cost reduction. Using 3D modelling, the fan shape is modified, and analysis flow is adopted to provide the way to airflow increase and reduce cost while maintaining the same wind capacity.

Torsional free vibration analysis of heavy duty powertrain (대형트럭 구동계의 비틀림 자유진동해석)

  • Ahn, Byoung-Min;Hong, Dong-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.437-443
    • /
    • 1998
  • Automobile company tries to reduce the inertia of powertrain to increase the fuel efficiency and increase the engine power every year to make the high speed driving possible at full load condition. These cause the torsional vibration of powertrain. But the demand about ride comfort improvement is increased constantly, so torsional vibration of powertrain become an emergency problem to be cured. This study is a basic research to reduce the torsional vibration of powertrain at driving condition. First, the heavy duty powertrain is characterized as a vibrating system. Its natural frequencies and mode shapes are reviewed. Second, by comparison of simulation results and experiment results, validity of developed model is verified. Finally, the couterplan which can reduce the torsional vibration by mode analysis and parameter modification is suggested.