• 제목/요약/키워드: automobile die

검색결과 222건 처리시간 0.028초

자동차 패널 헤밍유닛의 설계자동화를 위한 기구학적 해석 (Kinematic Motion Analysis for Automatic Hemming Unit Design of Car Panel)

  • 김동직;정훈;송윤준;한영호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.438-445
    • /
    • 2006
  • Due to the complicated character of the hemming process for automobile panels, it is very difficult to set up a consistent and reliable die design guide rule that does not require subtle decision of experienced experts during design stage and multiple trials during hemming die making. In this paper an automatic die design system of hemming units is pursued by presenting some algorithms, in which geometric data and constraints of the hemming units were converted to formula. two kinds of hemming units, 2-link type and 4-link type, were selected as examples and the geometries and kinematics of all parts were analyzed to build the design algorithm.

  • PDF

자동차 TOKE 제품의 타원용기 성형에 관한 연구 (A Study on Elliptical Cup Drawing of Yoke products, Automobile)

  • 박동환;배원락;박상봉;강성수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.385-388
    • /
    • 2000
  • During the deep drawing process an initially flat blank is clamped between the die and the blank holder after which the punch moves down to deform the clamped blank into the desired shape. In general, sheet metal forming may involve stretching, drawing, bending or various combinations of those basic modes of deformation. The deformation problems of sheet metal working involve non-linearity in geometry and material. In this work, The punch load and thickness strain of electro-galvanized sheet steel (SECD) for elliptical deep drawing are examined under the various process conditions including, punch shape radius, die shape radius. The changes of punch load and thickness strain distribution of the deformed elliptical cup are affected by the size of each die shape radius.

  • PDF

AutoCAD를 이용한 자동차용 헤밍 유닛의 자동작도 프로그램 개발 (Development of Automatic Drawing Program for Hemming Unit by AutoCAD)

  • 김동직;송윤준;정훈;김영빈;한영호
    • 소성∙가공
    • /
    • 제16권3호
    • /
    • pp.163-171
    • /
    • 2007
  • Due to the complicated character of the hemming process for automobile panels, it is very difficult to setup a consistent and reliable die design guide rule that require subtle decision of experienced experts and multiple trials during hemming die design and making. In this paper an automatic die design system of hemming units is pursued by presenting some algorithms, in which geometric data and constraints of the hemming units were converted to formula. The geometries and kinematics of all part for two kinds of hemming units, 2-link type and 4-link type were analysed kinematically to build the design algorithm. The algorithms were verified by automatic drawing used AutoCAD VBA program in example for the hemming unit design of a bonnet.

스탬핑 프레스 금형 다이페이스 설계 해석 시스템 (Design Analysis System for Dieface of Stamping Press Dies)

  • 금영탁;정승훈;이완우;박성일;김준환
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.567-573
    • /
    • 2000
  • An analysis system for evaluating the design of dieface of stamping press dies is developed. The die design analysis system interfaced with CATIA via universal or NASTRAN data format provides the design information such as binder-wrap, punch contact status, section length change ratio, wrinkle symptom etc., which are crucial in predicting the defects of initial shape of the sheet in the dieface design stage. The graphic post-processor of developed system which displays 3-dimensional shapes of tool and die and analysis results, helps the interpretation of design evaluation. The dieface design analysis system was tested in draw dies of front floor panel and quarter panel of auto-body in order to verify the usefulness and validity of the system The examples show that the developed system would be a good tool in evaluating dieface designs.

  • PDF

금형면 마찰조건을 달리한 스플라인 단조에 관한 연구 (The Study for Cold Forging of Spline with Different Friction Factor on Die Surface)

  • 김관우;이석진;김문기;조성열;조해용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.295-303
    • /
    • 2009
  • Forging of square spline was investigated by using finite element methods in this study. Spline is widely used by torque transmitter in the fields of automobile, aircraft, and shipping etc. Friction on the surface of die is regarded as the most important factor to improve the dimensional accuracy for complete forming of spline teeth. Finite element simulation was carried out to improve the formability of the spline, especially remove unnecessary burrs which were extruded in gap between the die and the punch. To remove the burrs, various friction factors are considered on the surfaces of the die in the simulations and punch flat surface was designed. The simulated results were compared with experimental ones. As a results, it is possible to control the growth of burrs and improve formability of spline teeth by applying various friction factors and design of punch flat surface.

복합공정(피어싱, 벤딩, 디프드로잉)을 갖는 제품 제조를 위한 프로그레시브 설계 자동화 시스템 개발 (Development of an Automated Progressive Design System for Manufacturing Product with Multi Processes, Piercing, Bending, and Deep Drawing)

  • 황범철;김철;배원병
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.55-64
    • /
    • 2008
  • This paper describes a research work of developing an automated progressive design system for manufacturing the product with multi processes such as piercing, bending, and deep drawing. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system consists of three main modules, which are shape treatment, strip layout, and die layout modules. Based on knowledge-based rules, the system is designed considering several factors, such as material and thickness of a product, piercing, bending and deep drawing sequence, and the complexities of the blank geometry and punch profiles. It generates the strip layout drawing for an automobile product. Die design for each process is carried out through the die layout module from the results of the strip layout module. Results obtained using the modules enable the designers for manufacturing products with multi processes to be more efficient in this field.

차량용 열차단판의 면품질 개선을 위한 성형해석 기반 금형면 설계 (Analysis-based Die Face Design for the Improvement of Surface Quality for a Heat Protect Panel of an Automobile)

  • 김기풍;김세호;이동길;장경천
    • 소성∙가공
    • /
    • 제17권4호
    • /
    • pp.278-283
    • /
    • 2008
  • This paper concerns the die face design for a heat protect panel aided by the finite element forming analysis in order to eliminate the surface defect and to improve the surface quality. The CAE procedure of the stamping process is introduced in order to reveal the reason of surface inferiorities and to improve surface quality. Complicated shape of the product induces the surface inferiorities such as wrinkling due to the insufficient restraining force of the forming blank and the non-uniform contact of the blank with the tools. This paper proposes a new guideline for the die design which includes the modification of tool shapes and addition of the draw-beads on the tool surface for ensuring the increased the restraining force with the uniform contact condition. The effectiveness of the proposed design is verified by the forming analysis and is confirmed by the tryout operation in the press shop. The analysis and test results show that the modified process parameters such as tool shapes and draw-beads can reduce the tendency of wrinkling and improve surface quality.

고온 압축 공정에서 금형과 알루미늄 빌렛의 접촉 열전달 계수 도출에 관한 연구 (A Study on Derivation of Contact Heat Transfer Coefficient Between Die and Aluminum Billet in High Temperature Compression Process)

  • 전효원;서창희;오상균;권태하;강경필;육형섭
    • 소성∙가공
    • /
    • 제30권3호
    • /
    • pp.142-148
    • /
    • 2021
  • In hot forging analysis, the interfacial heat transfer coefficient (IHTC) is a very important factor defining the heat flow between the die and the material. In particular, in the hot forging analysis of aluminum 6xxx series alloy, which are used in automobile parts, differences in load and microstructure occur due to changes in surface temperature according to the IHTC. This IHTC is not a constant value but changes depends on pressure. This study derived the IHTC under low load using aluminum 6082 alloy. An experiment was performed by fabricating a compression die, and a heat transfer analysis was performed based on the experimental data. The heat transfer analysis used DEFORM-2D, a commercial finite element analysis program. To derive the IHTC, heat transfer analysis was performed for the IHTC in the range of 10 to 50 kW/m2℃ at intervals of 10kW/m2℃. The heat transfer analysis results according to the IHTC and the actual experimental values were compared to derive the IHTC of the aluminum 6082 alloy under low load.

AM50 마그네슘 합금의 다이캐스팅 공정에 관한 연구 (A Study on the Die-casting Process of AM50 Magnesium Alloy)

  • 김순국;장창우;이준희;정찬회;서용권;강충길
    • 한국재료학회지
    • /
    • 제16권8호
    • /
    • pp.516-523
    • /
    • 2006
  • In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automobile industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modern vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die-casting parts can be easily produced. The die casting process is a fast production method capable of a high degree of automation for which certain Mg alloys are ideally suited. In this study, step-dies and flowability tests for AM50 were performed by die-casting process according to various combination of casting pressure and plunger velocity. We were discussed to velocity effect of forming conditions followed by results of microstructure, FESEM-EDX, hardness and tensile strength. Experimental results represented that the conditions of complete filling measured die-casting pressure 400 bar, 1st plunger velocity 1.0 m/s and 2nd plunger velocity 6.0 m/s. The increasing of 2nd plunger velocity 4.0 to 7.0 m/s decreased average grain size of $\alpha$ phase and pore. It was due to rapid filling of molten metal, increasing of cooling rate and pressure followed by increased 2nd plunger velocity. The pressure should maintain until complete solidification to make castings of good quality, however, the cracks were appeared at pressure 800bar over.

유한요소법에 의한 자동차 로어암의 하이드로포밍 성형 해석 및 제작 (Manufacture and Analysis of Hydroforming Process for an Automobile Lower Arm by FEM)

  • 김정;강성종;강범수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.592-597
    • /
    • 2001
  • An automobile lower arm has been fabricated in a prototype form by hydroforming with the aids of numerical analysis and experiments. For the numerical process design, a program called HydroFORM-3D developed here on the basis of a rigid-plastic model, has been applied to the lower arm hydroforming. The friction calculation between die and workpiece has been dealt carefully by introducing a new scheme in three-dimensional surface integration. To accomplish successful hydroforming process design, thorough investigation on proper combination of process parameters such as internal hydraulic pressure, axial feeding, and tool geometry has been performed. Results obtained from numerical simulation for a lower arm in hydroforming process are compared with a series of experiments. The comparison shows that the numerical analysis successfully provides the manufacturing information on the lower arm hydroforming, and it predicts the geometrical deformation and the thinning.

  • PDF