• Title/Summary/Keyword: automation algorithm

Search Result 1,030, Processing Time 0.032 seconds

Comparing String Similarity Algorithms for Recognizing Task Names Found in Construction Documents (문자열 유사도 알고리즘을 이용한 공종명 인식의 자연어처리 연구 - 공종명 문자열 유사도 알고리즘의 비교 -)

  • Jeong, Sangwon;Jeong, Kichang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.6
    • /
    • pp.125-134
    • /
    • 2020
  • Natural language encountered in construction documents largely deviates from those that are recommended by the authorities. Such practice that is lacking in coherence will discourage integrated research with automation, and it will hurt the productivity in the industry for the long run. This research aims to compare multiple string similarity (string matching) algorithms to compare each algorithm's performance in recognizing the same task name written in multiple different ways. We also aim to start a debate on how prevalent the aforementioned deviation is. Finally, we composed a small dataset that associates construction task names found in practice with the corresponding task names that are less cluttered w.r.t their formatting. We expect that this dataset can be used to validate future natural language processing approaches.

A Study on Path Analysis Between Elementary School Students' Computational Thinking Components (초등학생의 컴퓨팅 사고력 구성요소 간의 경로 분석 연구)

  • Lee, Jaeho;Jang, Junhyung
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.2
    • /
    • pp.139-146
    • /
    • 2020
  • There is a hot debate about what the core competencies of future generations, who have to live an uncertain future, should cultivate. The future society is expected to become a Software-oriented Society driven by software. Under these circumstances, interest in software education is exploding around the world, and interest in cultivating computational thinking through software education is also increasing. Also, discussions about what computational thinking is and what competence factors are made up are in progress. However, the research on the relationship between the competence factors of computational thinking is relatively insufficient. In order to solve this problem, this study proceeded as follows. First, five competence factors of computational thinking were selected. Second, we defined a path model to analyze the relationships among the competence factors of computational thinking. Third, we chose a test tool to test computational thinking. Fourth, the computational thinking tests were conducted for 801 students in grades 3 through 6 of elementary school. Fifth, implications were derived by analyzing various viewpoints based on the results of the computational thinking test.

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조 강도 해석 및 설계 최적화에 관한 연구)

  • Won June-Ho;Kim Jong-Soo;choi Joo-Ho;Yoon Jong-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, a CAB/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares, for a complicated model for which parametric modeling provided by CAD software is not possible. CAD modeling process is automated by using UG/OPEN API function and UG/Knowledge Fusion provided by Unigraphics. The generated model is transferred to the analysis code ANSYS in parasolid format. Visual DOC software is used for optimization. The system is developed for PLS(Plasma Lighting System), which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The PLS system consists of more then 20 components, which requires a lot of human efforts in modeling and analysis. The analysis for PLS includes static load, wind load and impact load analysis. As a result of analysis, it is found that the most critical component is a tilt assembly, which links lower & upper body assembly. For more reliable analysis, experiment is conducted using MTS and compared with the Finite element analysis result. The objective in the optimization is to minimize the material volume under allowable stresses. The design variables are three parameters in the tilt assembly that are chosen to be the most sensitive in stress values of twelve parameters. Gradient based method and RSM(Response Surface Method) are used for the algorithm and the results are compared. As a result of optimization, the maximum stress is reduced by 57%.

  • PDF

A Study of the Connection between Achievement Criteria and Computational Thinking in the Areas of Algorithms, Programming and Robotics, and Computing (알고리즘, 프로그래밍, 로봇과 컴퓨팅 영역의 성취 기준과 컴퓨팅 사고력의 관련성 연구)

  • Jeong, Youngsik;Shin, Soobum;Sung, Younghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.1
    • /
    • pp.105-114
    • /
    • 2017
  • Because the concepts and components of computational thinking included in the Information Education Curriculum and the Software Education Guidelines are different, it has been difficult to establish computational thinking-based software education in schools. Therefore, this study, which is based on the Delphi survey results from 39 experts, we defined computational thinking as 'computing thinking' and separated the components of computational thinking into five main categories: (1) problem definition, (2) data analysis, (3) abstraction, (4) automation, and (5) generalization. In addition, we selected software areas that are strongly related to computational thinking in the KAIE's information Curriculum Standard Model and surveyed experts to decide which computing thinking components are related to the achievement criteria of the software areas.

Exploring Students Competencies to be Creative Problem Solvers With Computational Thinking Practices

  • Park, Young-Shin;Park, Miso
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.388-400
    • /
    • 2018
  • The purpose of this study was to explore the nine components of computational thinking (CT) practices and their operational definitions from the view of science education and to develop a CT practice framework that is going to be used as a planning and assessing tool for CT practice, as it is required for students to equip with in order to become creative problem solvers in $21^{st}$ century. We employed this framework into the earlier developed STEAM programs to see how it was valid and reliable. We first reviewed theoretical articles about CT from computer science and technology education field. We then proposed 9 components of CT as defined in technology education but modified operational definitions in each component from the perspective of science education. This preliminary CTPF (computational thinking practice framework) from the viewpoint of science education consisting of 9 components including data collection, data analysis, data representation, decomposing, abstraction, algorithm and procedures, automation, simulation, and parallelization. We discussed each component with operational definition to check if those components were useful in and applicable for science programs. We employed this CTPF into two different topics of STEAM programs to see if those components were observable with operational definitions. The profile of CT components within the selected STEAM programs for this study showed one sequential spectrum covering from data collection to simulation as the grade level went higher. The first three data related CT components were dominating at elementary level, all components of CT except parallelization were found at middle school level, and finally more frequencies in every component of CT except parallelization were also found at high school level than middle school level. On the basis of the result of CT usage in STEAM programs, we included 'generalization' in CTPF of science education instead of 'parallelization' which was not found. The implication about teacher education was made based on the CTPF in terms of science education.

Study of Welding Toughness Characteristics on the Root-pass Welding Process of High Tensile Steel at Tower Production for Offshore Wind Power Generation (해상풍력 발전용 타워 제작시 고장력강재의 초층용접에 관한 용접특성 연구)

  • Jung, Sung-Myoung;Kim, Ill-Soo;Kim, Ji-Sun;Na, Hyun-Ho;Lee, Ji-Hye
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.349-353
    • /
    • 2012
  • As the world wind energy market grows rapidly, the productions of wind power generation equipment have recently increased, but manufacturers are not able meet this requirement. Particularly offshore wind energy industry is one of the most popular renewable energy sectors. To generalize welding processes, the welding automation is considered for steel structure manufacturing in offshore wind energy to get high quality and productivity. Welding technology in construction of the wind towers is depended on progress productivity. In addition, the life of wind tower structures should be considered by taking account of the natural weathering and the load it endures. The root passes are typically deposited using Gas Tungsten Arc Welding(GTAW) with a specialized backing gas shield. Not only the validation consists of welders experienced in determining the welding productivity of the baseline welding procedure, but also the standard testing required by the ASME section IX and API1104 codes, toughness testing was performed on the completed field welds. This paper presents the welding characteristics of the root-pass welding of high tensile steel in manufacturing of offshore wind tower. Based on the result from welding experiments, optimal welding conditions were selected after analyzing correlation between welding parameters(peak current, background current and wire feed rate) and back-bead geometry such as back-bead width(mm) and back-bead height performing root-pass welding experiment under various conditions. Furthermore, a response surface approach has been applied to provide an algorithm to predict an optimal welding quality.

Character Extraction from Color Map Image Using Interactive Clustering (대화식 클러스터링 기법을 이용한 칼라 지도의 문자 영역 추출에 관한 연구)

  • Ahn, Chang;Park, Chan-Jung;Rhee, Sang-Burm
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.270-279
    • /
    • 1997
  • The conversion of printed maps into computerized databases is an enormous task. Thus the automation of the conversion process is essential. Efficient computer representation of printed maps and line drawings depends on codes assigned to characters, symbols, and vector representation of the graphics. In many cases, maps are constructed in a number of layers, where each layer is printed in a distinct color, and it represents a subset of the map information. In order to properly represent the character layer from color map images, an interactive clustering and character extraction technique is proposed. Character is usually separated from graphics by extracting and classifying connected components in the image. But this procedure fails, when characters touch or overlap lines-something that occurs often in land register maps. By vectorizing line segments, the touched characters and numbers are extracted. The algorithm proposed in this paper is intended to contribute towards the solution of the color image clustering and touched character problem.

  • PDF

A Study on Optimal Design for Linear Electromagnetic Generator of Electricity Sensor System using Vibration Energy Harvesting (진동에너지 하베스팅을 이용한 전력감지시스템용 리니어 전자기 발전기에 관한 최적설계)

  • Cho, Seong Jin;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.7-15
    • /
    • 2017
  • Recently, an electricity sensor system has been installed and operated to prevent failures and accidents by identifying whether a transformer is normal in advance of failure. This electricity sensor system is able to both measure and monitor the transformer's power and voltage remotely and send information to a manager when unusual operation is discovered. However, a battery is required to operate power detection devices, and battery systems need ongoing management such as regular replacement. In addition, at a maintenance cost, occasional human resources and worker safety problems arise. Accordingly, we apply a linear electromagnetic generator using vibration energy from a transformer for an electric sensor system's drive in this research and we conduct optimal design to maximize the linear electromagnetic generator's power. We consider design variables using the provided design method from Process Integration, Automation, and Optimization (PIAnO), which is common tool from process integration and design optimization (PIDO). In addition, we analyze the experiment point from the design of the experiments using "MAXWELL," which is a common electromagnet analysis program. We then create an approximate model and conduct accuracy verification. Finally, we determine the optimal model that generates the maximum power using the proven approximate kriging model and evolutionary optimization algorithm, which we then confirm via simulation.

Determination of Valve Gate Open Timing for Minimizing Injection Pressure of an Automotive Instrument Panel (자동차용 인스트루먼트 패널의 사출압력 최소화를 위한 밸브 게이트 열림 시점 결정)

  • Cho, Sung-Bin;Park, Chang-Hyun;Pyo, Byung-Gi;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.46-51
    • /
    • 2012
  • Injection pressure, an important factor in filling process, should be minimized to enhance injection molding quality. Injection pressure can be controlled by valve gate open timing. In this work, we decided the valve gate open timing to minimize the injection pressure. To solve this design problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding CAE tool, to PIAnO (Process Integration, Automation and Optimization), a commercial PIDO (Process Integration, and Design Optimization) tool using the file parsing method. In order to reduce computational cost, we performed an approximate optimization using meta-models that replaced expensive computer simulations. At first, we carried out DOE (Design of Experiments) using OLHD (Optimal Latin Hypercube Design) available in PIAnO. Then, we built Kriging models using the simulation results at the sampling points. Finally, we used micro GA (Genetic Algorithm) available in PIAnO. Using the proposed design approach, the injection pressure has been reduced by 13.7% compared to the initial one. This design result clearly shows the validity of the proposed design approach.

Analysis System for SNS Issues per Country based on Topic Model (토픽 모델 기반의 국가 별 SNS 관심 이슈 분석 시스템)

  • Kim, Seong Hoon;Yoon, Ji Won
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1201-1209
    • /
    • 2016
  • As the use of SNS continues to increase, various related studies have been conducted. According to the effectiveness of the topic model for existing theme extraction, a huge number of related research studies on topic model based analysis have been introduced. In this research, we suggested an automation system to analyze topics of each country and its distribution in twitter by combining world map visualization and issue matching method. The core system components are the following three modules; 1) collection of tweets and classification by nation, 2) extraction of topics and distribution by country based on topic model algorithm, and 3) visualization of topics and distribution based on Google geochart. In experiments with USA and UK, we could find issues of the two nations and how they changed. Based on these results, we could analyze the differences of each nation's position on ISIS problem.