International Journal of Advanced Culture Technology
/
v.7
no.2
/
pp.209-217
/
2019
Due to the development of artificial intelligence and image recognition technology that play important roles in the field of 4th industry, office automation systems and unmanned automation systems are rapidly spreading in human society. The proposed algorithm first finds the variances of the differences between the tile values constituting the learning characters and the experimental character and then recognizes the experimental character according to the distribution of the three learning characters with the smallest variances. In more detail, for 100 learning data characters and 10 experimental data characters, each character is defined as the number of black pixels belonging to 15 tile areas. For each character constituting the experimental data, the variance of the differences of the tile values of 100 learning data characters is obtained and then arranged in the ascending order. After that, three learning data characters with the minimum variance values are selected, and the final recognition result for the given experimental character is selected according to the distribution of these character types. Moreover, we compare the recognition result with the result made by a neural network of basic structure. It is confirmed that satisfactory recognition results are obtained through the processes that subdivide the learning characters and experiment characters into tile sizes and then select the recognition result using variances.
International conference on construction engineering and project management
/
2022.06a
/
pp.1085-1092
/
2022
Travel distance is a parameter mainly used in the objective function of Construction Site Layout Planning (CSLP) automation models. To obtain travel distance, common approaches, such as linear distance, shortest-distance algorithm, visibility graph, and access road path, concentrate only on identifying the shortest path. However, humans do not necessarily follow one shortest path but can choose a safer and more comfortable path according to their situation within a reasonable range. Thus, paths generated by these approaches may be different from the actual paths of the workers, which may cause a decrease in the reliability of the optimized construction site layout. To solve this problem, this paper adopts reinforcement learning (RL) inspired by various concepts of cognitive science and behavioral psychology to generate a realistic path that mimics the decision-making and behavioral processes of wayfinding of workers on the construction site. To do so, in this paper, the collection of human wayfinding tendencies and the characteristics of the walking environment of construction sites are investigated and the importance of taking these into account in simulating the actual path of workers is emphasized. Furthermore, a simulation developed by mapping the identified tendencies to the reward design shows that the RL agent behaves like a real construction worker. Based on the research findings, some opportunities and challenges were proposed. This study contributes to simulating the potential path of workers based on deep RL, which can be utilized to calculate the travel distance of CSLP automation models, contributing to providing more reliable solutions.
Journal of the Society of Naval Architects of Korea
/
v.61
no.5
/
pp.370-377
/
2024
The International Maritime Organization (IMO) mandates that evacuation analysis must be performed at the design stage to ensure the safety of passengers aboard ships. Therefore, ship designers are required to conduct this evacuation analysis during the ship design process. Evacuation analysis begins with creating an escape diagram that outlines the routes from each cabin to the designated assembly stations based on the designed plans. Subsequently, necessary parameters for escape analysis are measured and recorded, and the analysis is conducted using an Excel-based program. This process is manual and time-consuming. Additionally, due to the frequent design changes characteristic of passenger ships, this process must be repeated multiple times. Hence, this study proposes a method to automate this analysis process. The proposed method in this study starts with a preprocessing step to extract key components from 2D drawings. Following this, it distinguishes spaces such as cabins, corridors, and doors within the processed drawings. Using the identified spaces, it then searches for the shortest evacuation routes from each cabin to the assembly station. Based on the identified routes, the method automatically performs the simplified evacuation analysis as prescribed by IMO regulations. Applying the algorithm for automated escape analysis to Ro-Pax vessels demonstrated that the analysis time per ship, which previously took about 15 days, can be reduced to less than 10 minutes.
This paper proposes a photogrammetric rectification method based on Bayesian approach as a method that eliminates vertical parallax between stereo images to minimize visual fatigue of 3D contents. The image rectification consists of two phases; geometry estimation and epipolar transformation. For geometry estimation, coplanarity-based relative orientation algorithm was used in this paper. To ensure robustness for mismatch and localization error occurred by automation of tie point extraction, Bayesian approach was applied by introducing several prior constraints. As epipolar transformation perspective transformation was used based on condition of collinearity to minimize distortion of result images and modification for input images. Other algorithms were compared to evaluate performance. For geometry estimation, traditional relative orientation algorithm, 8-points algorithm and stereo calibration algorithm were employed. For epipolar transformation, Hartley algorithm and Bouguet algorithm were employed. The evaluation results showed that the proposed algorithm produced results with high accuracy, robustness about error sources and minimum image modification.
Journal of Korean Society of Industrial and Systems Engineering
/
v.40
no.2
/
pp.129-136
/
2017
Among the information technology and automation that have rapidly developed in the manufacturing industries recently, tens of thousands of quality variables are estimated and categorized in database every day. The former existing statistical methods, or variable selection and interpretation by experts, place limits on proper judgment. Accordingly, various data mining methods, including decision tree analysis, have been developed in recent years. Cart and C5.0 are representative algorithms for decision tree analysis, but these algorithms have limits in defining the tolerance of continuous explanatory variables. Also, target variables are restricted by the information that indicates only the quality of the products like the rate of defective products. Therefore it is essential to develop an algorithm that improves upon Cart and C5.0 and allows access to new quality information such as loss cost. In this study, a new algorithm was developed not only to find the major variables which minimize the target variable, loss cost, but also to overcome the limits of Cart and C5.0. The new algorithm is one that defines tolerance of variables systematically by adopting 3 categories of the continuous explanatory variables. The characteristics of larger-the-better was presumed in the environment of programming R to compare the performance among the new algorithm and existing ones, and 10 simulations were performed with 1,000 data sets for each variable. The performance of the new algorithm was verified through a mean test of loss cost. As a result of the verification show, the new algorithm found that the tolerance of continuous explanatory variables lowered loss cost more than existing ones in the larger is better characteristics. In a conclusion, the new algorithm could be used to find the tolerance of continuous explanatory variables to minimize the loss in the process taking into account the loss cost of the products.
Park, Ho-Cheol;Koo, Doe-Gyoon;Lee, Jie-Tae;Cho, Hyun-Ju;Han, Young-A;Sohn, Sung-Ok;Ji, Byung-Chul
International Journal of Control, Automation, and Systems
/
v.4
no.6
/
pp.763-768
/
2006
The two-for-one(TFO) twister is precision machinery that twists fibers rapidly under constant tension. Since the quality of the twisted yarn is directly deteriorated by faults of the twister, such as the distortion of the spinning axis, bearing abrasion, and tension irregularity, it is important to detect faults of the TFO twister at an early stage. In this research, a new algorithm is proposed to detect faults of the TFO twister and their causes, by measuring the vibrations of the TFO twister and obtaining frequency components with a FFT algorithm. The TFO twister with faults showed increased vibrations and each fault generated vibrations at different frequencies. By analyzing changes of characteristics of vibrations, we can determine faulty twisters. The proposed fault detection algorithm can be implemented cheaply with a signal processor chip. It can be used to find when to repair a faulty TFO twister without much loss of yam on-line.
Milasi, Rasoul Mohammadi;Jamali, Mohammad Reza;Lucas, Caro
International Journal of Control, Automation, and Systems
/
v.5
no.4
/
pp.436-443
/
2007
In this paper, an intelligent method called BELBIC (Brain Emotional Learning Based Intelligent Controller) is used to control of Locally Linear Neuro-Fuzzy Model (LOLIMOT) of Washing Machine. The Locally Linear Neuro-Fuzzy Model of Washing Machine is obtained based on previously extracted data. One of the important issues in using BELBIC is its parameters setting. On the other hand, the controller design for Washing Machine is a multi objective problem. Indeed, the two objectives, energy consumption and effectiveness of washing process, are main issues in this problem, and these two objectives are in contrast. Due to these challenges, a Multi Objective Genetic Algorithm is used for tuning the BELBIC parameters. The algorithm provides a set of non-dominated set points rather than a single point, so the designer has the advantage of selecting the desired set point. With considering the proper parameters after using additional assumptions, the simulation results show that this controller with optimal parameters has very good performance and considerable saving in energy consumption.
This paper presents a real-time indoor location and pose estimation method that utilizes simple artificial markers and image analysis techniques for the purpose of warehouse automation. The conventional indoor localization methods cannot work robustly in warehouses where severe environmental changes usually occur due to the movement of stocked goods. To overcome this problem, the proposed framework places artificial markers having different interior pattern on the predefined position of the warehouse floor. The proposed algorithm obtains marker candidate regions from a captured image by a simple binarization and labeling procedure. Then it extracts maker interior pattern information from each candidate region in order to decide whether the candidate region is a true marker or not. The extracted interior pattern information and the outer boundary of the marker are used to estimate location and heading angle of the localization system. Experimental results show that the proposed localization method can provide high performance which is almost equivalent to that of the conventional method using an expensive LIDAR sensor and AMCL algorithm.
This paper deals with feeling recognition from people's voice to fine feature vectors. Voice signals include the people's own information and but also people's feelings and fatigues. So, many researches are being progressed to fine the feelings from people's voice. In this paper, We analysis Selectable Mode Vocoder(SMV) that is one of the standard 3GPP2 codecs of ETSI. From the analyzed result, we propose voices features for recognizing feelings. And then, feeling recognition algorithm based on gaussian mixture model(GMM) is proposed. It uses feature vectors is suggested. We verify the performance of this algorithm from changing the mixture component.
Proceedings of the Korean Society of Machine Tool Engineers Conference
/
2004.04a
/
pp.225-230
/
2004
A cold & hot rolling coil production line of iron nill consists of a kind of coherent automatic process, but an automatic labelling process still had technical difficulties in the automation of its process. The reason for difficulties in building an automatic process is that quantitative data for each rolled coil from every shipping is not easy to receive from the previous process. it is not possible to apply for a general and simple purpose robot that is actually worked through a taught position to the process because the size and direction of the coi1 has differed on every shipping. From these reasons. we introduce a robot vision system to accept an expected variable situation and to ensure the stability and flexibility of the process. This paper examines a study applied for similar cases and finds the position and direction of relied coil using the moment invariant algorithm proposed by Hu. In addition. the camera calibration and position error compensation algorithm is applied by the analysis of the relationship of transition in a space coordinate system. The construction of a robot vision system proposed by this paper is a more intellectual system than that of the automatic labelling system. which is already used to the Daihen steel nill of NEW JAPAN steel mill co. Ltd in Japan, and shows a better independent operation in the field of production.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.