• Title/Summary/Keyword: automation algorithm

Search Result 1,037, Processing Time 0.023 seconds

Human Visual System-Aware and Low-Power Histogram Specification and Its Automation for TFT-LCDs (TFT-LCD를 위한 인간 시각 만족의 저전력 히스토그램 명세화 기법 및 자동화 연구)

  • Jin, Jeong-Chan;Kim, Young-Jin
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1298-1306
    • /
    • 2016
  • Backlight has a major factor in power consumption of TFT-LCDs which are most popular in portable devices. There have been a lot of attempts to achieve power savings by backlight dimming. At the same time, the researches have shown image compensation due to decreased brightness of a displayed image. However, existing image compensation methods such as histogram equalization have some limits in completely satisfying the human visual system (HVS)-awareness. This paper proposes an enhanced dimming technique to obtain both power saving and HVS-awareness by combining pixel compensation and histogram specification for TFT-LCDs. This method executes a search algorithm and an automation algorithm employing simplified calculations for fast image processing. Experimental results showed that the proposed method achieved significant improvement in visual satisfaction per power saving over existing backlight dimming.

Development of the Noise Elimination Algorithm of Stereo-Vision Images for 3D Terrain Modeling (지반형상 3차원 모델링을 위한 스테레오 비전 영상의 노이즈 제거 알고리즘 개발)

  • Yoo, Hyun-Seok;Kim, Young-Suk;Han, Seung-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • For developing an Automation equipment in construction, it is a key issue to develop 3D modeling technology which can be used for automatically recognizing environmental objects. Recently, for the development of "Intelligent Excavating System(IES), a research developing the real-time 3D terrain modeling technology has been implemented from 2006 in Korea and a stereo vision system is selected as the optimum technology. However, as a result of performance tests implemented in various earth moving environment, the 3D images obtained by stereo vision included considerable noise. Therefore, in this study, for getting rid of the noise which is necessarily generated in stereo image matching, the noise elimination algorithm of stereo-vision images for 3D terrain modeling was developed. The consequence of this study is expected to be applicable in developing an automation equipments which are used in field environment.

IoT based Situation-specific Task Classification Algorithm (IoT 기반 상황 별 작업 분류 알고리즘)

  • Jeong, Dohyeong;Kim, Chuelhee;Lee, Jaeseung;Lee, Hyoungseon;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.613-614
    • /
    • 2017
  • Recently, research on the automation of home IoT has been carried out in which IoT (Internet of Things) is applied inside the home. However, the conventional IoT automation system has a problem that the operation of the device is limited only by the threshold value of the sensor, so that the device may collide and interfere with each other and the efficiency of the Task is low due to the malfunction of the device. In this paper, we propose a Situation-specific task classification algorithm to solve these problems. Using the sensor threshold and the current date as classification values in the decision tree, the task according to the internal situation of the home is classified and the corresponding device is selected and proceeded. Therefore, it is expected that the users will be provided with a service that changes flexibly according to changes in the internal situation of the home, and the accuracy of the operation will be increased by reducing the malfunction of the device and the collision between the devices.

  • PDF

Development a scheduling model for AGV dispatching of automated container terminals (자동화 컨테이너 터미널의 AGV 배차 스케줄링 모형 개발)

  • Jae-Yeong Shin;Ji-Yong Kwon;Su-Bin Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.59-60
    • /
    • 2023
  • The automation of container terminals is an important factor that determines port competitiveness, and global advanced ports tend to strengthen their competitiveness through container terminal automation. The operational efficiency of the AGV, which is an essential transport equipment of the automated terminal, can improve the productivity of the automated terminal. The operation of AGVs in automated container terminals differs from that of conventional container terminals, as it is based on an automated system in which AGVs travel along designated paths and operate according to assigned tasks, requiring consideration of factors such as workload, congestion, and collisions. To prevent such problems and improve the efficiency of AGV operations, a more sophisticated model is necessary. Thus, this paper proposes an AGV scheduling model that takes into account the AGV travel path and task assignment within the terminal The model prevent the problem of deadlock and. various cases are generated by changing AGV algebra and number of tasks to create AGV driving situations and evaluate the proposed algorithm through algorithm and optimization analysis.

  • PDF

Application of Area Based Matching for the Automation of Interior Orientation (내부표정의 자동화를 위한 영역중심 영상정합기법 적용)

  • 유복모;염재홍;김원대
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.4
    • /
    • pp.321-330
    • /
    • 1999
  • Automation of observation and positioning of fiducial marks is made possible with the application of image matching technique, developed through the cooperative research effort of computer vision and digital photogrammetry. The major problem in such automation effort is to minimize the computing time and to increase the positional accuracy. Except for scanning and ground control surveying, the interior orientation process was automated in this study, through the development of an algorithm which applies the image matching and image processing techniques. The developed system was applied to close-range photogrammetry and the analysis of the results showed 54% improvement in processing time. For fiducial mark observation during interior orientation, the Laplacian of Gaussian transformation and the Hough transformation were applied to determine the accurate position of the center point, and the correlation matching and the least squares matching method were then applied to improve the accuracy of automated observation of fiducial marks. Image pyramid concept was applied to reduce the computing time of automated positioning of fiducial mark.

  • PDF

Implementation of Efficient Cable Spreading Algorithm and Automation Program for Electrical Equipment in Power Plant (발전소 전기설비를 위한 효과적인 케이블 포설 알고리즘 및 자동화 프로그램 구현)

  • Park, Ki-Hong;Kang, An Na;Choi, Hyo Beom;Lee, Yang Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2229-2236
    • /
    • 2014
  • In this paper, we proposed and implemented the automated cable-spreading program which can be done effectively cabling plan for electrical equipment in power plant. Cause the process of existing cable-spreading design was written in by hand, there are grossly inefficient gain by a personal and time investment with cable omission and unfixed overfill value. Proposed automation program for cable-spreading, which is coded cable and raceway, can calculate the overfill value and raceway change. Some experiments are conducted so as to verify the proposed model, and as a result, implemented cable-spreading program is well performed.

Object Pose Estimation and Motion Planning for Service Automation System (서비스 자동화 시스템을 위한 물체 자세 인식 및 동작 계획)

  • Youngwoo Kwon;Dongyoung Lee;Hosun Kang;Jiwook Choi;Inho Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.176-187
    • /
    • 2024
  • Recently, automated solutions using collaborative robots have been emerging in various industries. Their primary functions include Pick & Place, Peg in the Hole, fastening and assembly, welding, and more, which are being utilized and researched in various fields. The application of these robots varies depending on the characteristics of the grippers attached to the end of the collaborative robots. To grasp a variety of objects, a gripper with a high degree of freedom is required. In this paper, we propose a service automation system using a multi-degree-of-freedom gripper, collaborative robots, and vision sensors. Assuming various products are placed at a checkout counter, we use three cameras to recognize the objects, estimate their pose, and create grasping points for grasping. The grasping points are grasped by the multi-degree-of-freedom gripper, and experiments are conducted to recognize barcodes, a key task in service automation. To recognize objects, we used a CNN (Convolutional Neural Network) based algorithm and point cloud to estimate the object's 6D pose. Using the recognized object's 6d pose information, we create grasping points for the multi-degree-of-freedom gripper and perform re-grasping in a direction that facilitates barcode scanning. The experiment was conducted with four selected objects, progressing through identification, 6D pose estimation, and grasping, recording the success and failure of barcode recognition to prove the effectiveness of the proposed system.

Deep Meta Learning Based Classification Problem Learning Method for Skeletal Maturity Indication (골 성숙도 판별을 위한 심층 메타 학습 기반의 분류 문제 학습 방법)

  • Min, Jeong Won;Kang, Dong Joong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.98-107
    • /
    • 2018
  • In this paper, we propose a method to classify the skeletal maturity with a small amount of hand wrist X-ray image using deep learning-based meta-learning. General deep-learning techniques require large amounts of data, but in many cases, these data sets are not available for practical application. Lack of learning data is usually solved through transfer learning using pre-trained models with large data sets. However, transfer learning performance may be degraded due to over fitting for unknown new task with small data, which results in poor generalization capability. In addition, medical images require high cost resources such as a professional manpower and mcuh time to obtain labeled data. Therefore, in this paper, we use meta-learning that can classify using only a small amount of new data by pre-trained models trained with various learning tasks. First, we train the meta-model by using a separate data set composed of various learning tasks. The network learns to classify the bone maturity using the bone maturity data composed of the radiographs of the wrist. Then, we compare the results of the classification using the conventional learning algorithm with the results of the meta learning by the same number of learning data sets.

A Study on Automatic Classification System of Red Blood Cell for Pathological Diagnosis in Blood Digitial Image (혈액영상에서 병리진단을 위한 적혈구 세포의 자동분류에 관한 연구)

  • 김경수;김동현
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.1
    • /
    • pp.47-53
    • /
    • 1999
  • In medical field, the computer has been used in the automatic processing of data derived in hospital. the automation of diagonal devices, and processing of medical digital images. In this paper, we classify red blood cell into 16 class including normal cell to the automation of blood analysis to diagnose disease. First, using UNL Fourier and invariant moment algorithm, we extract features of red blood cell from blood cell image and then construct multi-layer backpropagation neural network to recognize. We proof that the system can give support to blood analyzer through blood sample analysis of 10 patients.

  • PDF

An Efficient Complex Event Processing Algorithm based on INFA-HTS for Out-of-order RFID Event Streams

  • Wang, Jianhua;Wang, Tao;Cheng, Lianglun;Lu, Shilei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4307-4325
    • /
    • 2016
  • With the aim of solving the problems of long processing times, high memory consumption and low event throughput in the current processing approaches in out-of-order RFID event streams, an efficient complex event processing method based on INFA-HTS (Improved Nondeterministic Finite Automaton-Hash Table Structure) is presented in this paper. The contribution of this paper lies in the fact that we use INFA and HTS to successfully realize the detection of complex events for out-of-order RFID event streams. Specifically, in our scheme, to detect the disorder of out-of-order event streams, we expand the traditional NFA model into a new INFA model to capture the related RFID primitive events from the out-of-order event stream. To high-efficiently manage the large intermediate capturing results, we use the HTS to store and process them. As a result, these problems in the existing methods can be effectively solved by our scheme. The simulation results of our experiments show that our proposed method in this paper outperforms some of the current general processing approaches used to process out-of-order RFID event streams.