
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, Sep. 2016 4307
Copyright ⓒ2016 KSII

An Efficient Complex Event Processing
Algorithm based on INFA-HTS for
Out-of-order RFID Event Streams

Jianhua Wang1, Tao Wang2, Lianglun Cheng2, Shilei Lu1

1 College of Electronic Engineering, South China Agricultural University
Guangzhou - P. R. China

 [e-mail: wangjianhua655@163.com]
2 College of Automation, Guangdong University of Technology

 Guangzhou - P. R. China
 [e-mail: wangtaosea@msn.com, llcheng@gdut.edu.cn, lvshilei@scau.edu.cn]

*Corresponding author: Jianhua Wang

Received November 17, 2015; revised July 19, 2016; accepted August 2, 2016;
published September 30, 2016

Abstract

With the aim of solving the problems of long processing times, high memory consumption and
low event throughput in the current processing approaches in out-of-order RFID event streams,
an efficient complex event processing method based on INFA-HTS (Improved
Nondeterministic Finite Automaton-Hash Table Structure) is presented in this paper. The
contribution of this paper lies in the fact that we use INFA and HTS to successfully realize the
detection of complex events for out-of-order RFID event streams. Specifically, in our scheme,
to detect the disorder of out-of-order event streams, we expand the traditional NFA model into
a new INFA model to capture the related RFID primitive events from the out-of-order event
stream. To high-efficiently manage the large intermediate capturing results, we use the HTS to
store and process them. As a result, these problems in the existing methods can be effectively
solved by our scheme. The simulation results of our experiments show that our proposed
method in this paper outperforms some of the current general processing approaches used to
process out-of-order RFID event streams.

Keywords: Complex event processing, Out-of-order, RFID event stream, NFA, Hash table
structure

This research was supported by the Joint Funds of the National Natural Science Foundation of China (No.
U1201251). The Youth Science Foundation project of National Natural Science Foundation of China (No.
61502110) and (No.61602187). The science and technology projects in Guangdong Province
(No.2016A020209007)and (No.2016A020210088), (No.2015A010103014)and(No.2015A020209161), The
project of Natural Science Foundation of Guangdong Province (No. 2016A030310453).

http://dx.doi.org/10.3837/tiis.2016.09.016 ISSN : 1976-7277

mailto:wangjianhua655@163.com
mailto:wangtaosea@msn.com
mailto:llcheng@gdut.edu.cn
mailto:lvshilei@scau.edu.cn

4308 Wang et al.: An Efficient Complex Event Processing Algorithm based on INFA-HTS for Out-of-order RFID Event Streams

1. Introduction

RFID radio frequency identification) technology is a non-contact automatic identification
technology that uses radio frequency communications to achieve data acquisition. With its
rapid development, RFID technology has been increasingly adopted in many fields, ranging
from RFID tracking for supply chain management to industrial manufacturing monitoring.
The wide distributions of RFID devices generate massive RFID event streams.

Because the massive RFID events generated by RFID devices are primitive events, and the
semantic information inside the primitive events is limited, we can obtain only simple
information from them. However, in real applications, we usually pay more attention to
complex information. For example, we focus on mining customers’ behaviours[1], predicting
a vehicle’s route[2], or measuring the similarity of PML documents[3] from a massive RFID
event stream. Thus, how to quickly obtain valuable information from a massive event stream
becomes a very important challenge when processing the event stream. Because Complex
Event Processing (CEP) [4] technology can pick up valuable information from a massive
RFID event stream by using the association between event attributes, matching rules and
algebraic operations, CEP has recently obtained increasing attention in the field of event
stream processing.

Recently, many complex event processing schemes have been studied to detect a complex
event-over-event stream, such as a complex event detection method based on a diagram[5], a
complex event detection method based on a tree[6], a complex event detection method based
on finite automatons[7], a complex event detection method based on petri-nets[8], a complex
event detection method based on a workflow[9], and some of their improved methods[10-12].
However, these methods all assume that the RFID event arrivals are totally ordered. They
assume that the received order of events, for the events received by the detection system, is the
same as the sent timestamp order. However, in practical application scenarios, network
latencies, machine failures, node errors and other reasons can cause events that occur first to
arrive later, which creates a large number of out-of-order phenomena among the event
occurrences. The many occurrences of out-of-order RFID events can lead to output blocking,
large system latencies, memory resource overflow and incorrect result generation, which
influence the processing efficiency of the RFID event stream.

To address those problems, some complex event processing schemes based on out-of-order
event streams have been presented recently, such as K-slack algorithms[13], the Conservative
and Aggressive method[14-15], the punctuation-based method [16], the Speculation-based
method[17], the Approximation-based method[18], and so on. The existing state-of-the-art
methods listed above for addressing out-of-order events can be divided into two classes of
approaches: buffering approaches and stream revision approaches. However, the existing two
classes of methods have the problems of long processing time, high memory consumption and
low detection throughput due to having too many event reorderings and recomputation
operations, which influence the whole processing efficiency.

In this paper, with the aim of solving the problems mentioned above that exist in some
current methods, an efficient complex event processing method based on INFA-HTS
(Improved Nondeterministic Finite Automaton-Hash Table Structure) is presented. The
achievements of this paper include the following:

(1) An INFA (Improved Nondeterministic Finite Automaton) model is first proposed in this
paper to meet the processing requirement of disorder even in an out-of-order RFID event

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4309

stream on the basis of studying existing NFA models, which can solve the problems of long
processing latency and high memory consumption by reducing many capturing operations
when there are correlated out-of-order primitive events from an out-of-order RFID event
stream.

(2) An HTS (Hash Table Structure) is proposed to store and process the large intermediate
captured results in this paper; this approach can solve the problems of long processing latency
and high memory consumption in out-of-order RFID event streams by applying the hash table
mapping, hash table storing, hash table searching and hash table comparison technologies to
significantly reduce the searching, inserting, sorting, and comparing operations compared with
some of the general methods.

 (3) A series of experiments are performed to verify the effectiveness of our proposed
method in this paper. The experimental results show that our proposed scheme provides a
significant improvement in terms of reducing the average execution time, lowering the
average memory consumption and average result latency, and improving the average event
throughput compared with some of the current processing methods.

The remainder of this paper is organized as follows. In section 2, the related knowledge on
out-of-order RFID event streams is introduced. Our proposed scheme is presented in section 3.
The experimental results and analysis using our proposed method are shown in section 4. In
section 5, we provide some conclusions.

2. Related Knowledge

2.1 Related definitions
In this section, some definitions that are related to RFID primitive events, RFID complex

events and out-of-order RFID events are given as follows:
RFID primitive event: A simple event that is generated by an RFID reader. This event

consists of the identifier of a tag, the identifier of a reader and a timestamp when reader
recognizes the tag. It can be expressed as e =<r, o, t>, where r represents the location at which
the RFID primitive event is generated; o represents the unique identification of the RFID
primitive event; and t represents the time at which the RFID primitive event occurs.

RFID complex event: A composite logical event that consists of primitive events based on
some rules and some event algebraic operations for application services. There are many event
algebraic operators such as AND, OR, NOT, SEQUENCE, INTERVAL, and so on.

Out-of-order RFID primitive event: A simple event that occurs as an out-of-order
phenomenon. This event can be defined as follows: given any newly arrived RFID primitive
event en, suppose that the events that the RFID device received before en are e1, e2, e3,...,en−1; if
there is any ei that satisfies the relationship en.timestamp <ei.timestamp (1≤i≤n−1), then en is
an out-of-order RFID primitive event.

Fig. 1 is an example of an out-of-order RFID primitive event in an RFID event stream. As
seen from Figure 1, the event instance b should appear between event a and event d, and event
c should appear between event d and event e; as a result, they do not appear in the correct
position, perhaps because of network latencies, machine failures, or node errors. Thus, event b
and event c are two out-of-order RFID primitive events in Fig. 1.

4310 Wang et al.: An Efficient Complex Event Processing Algorithm based on INFA-HTS for Out-of-order RFID Event Streams

a d e b c a c b b c
1 3 5 6 7 8 9 10 2 4

received order

Fig. 1. Out-of-order RFID primitive events over an event stream

2.2 Processing difficulties for an out-of-order RFID event stream
As is known, there is an enormous difference in obtaining a complex event from an

out-of-order RFID event stream compared with an ordered stream. The following are some of
the processing difficulties when processing out-of-order an RFID event stream:

(1) It is difficult to establish corresponding NFA models to capture the related RFID
primitive event from out-of-order RFID primitive events. As is known, it is easy to establish a
corresponding NFA model according to pattern expression for capturing the related RFID
primitive event due to the total time in an ordered RFID event stream, while it is difficult to
build a unified NFA model for capturing related primitive events from an out-of-order RFID
event stream due to the uncertainty in the arrival of the RFID events and the sequential order of
the NFA model under the same detection condition. Take establishing the corresponding
INFA models from out-of-order event pattern expression SEQ (A, B, C), for example, to
illustrate the established difficulties for an out-of-order RFID stream. There are two
established difficulties: First, in an out-of-order RFID stream, it is possible to have an RFID
primitive event appear in any combination of event instances a, b, and c due to its uncertainty
of arrival. Second, different combination forms of event instances a, b, and c require different
detection models because of the sequential order of the NFA model. Thus, it is very difficult to
establish a unified detection model for an out-of-order RFID event stream.

(2) It is difficult to determine the final state of a complex event. It is easy to determine the
final state of a complex event in an ordered RFID event stream, which can be accomplished by
judging the termination event due to its total time order. However, in an out-of-order RFID
event stream, some primitive events composed into a complex event might not have fully
arrived when the termination event arrives, due to the network latencies and other reasons.
Under such conditions, it is very difficult to determine the final state of a complex event by
only judging the termination event. We also consider the constituted timestamp of the
out-of-order RFID event. The complexity of a double judgement adds to the processing
difficulty for an out-of-order RFID event stream.

(3) It is difficult to judge the nonoccurrence or nonarrival for RFID primitive events
composed into the complex event. It is easy to judge whether a correlated RFID primitive
event is a nonoccurrence or nonarrival in an ordered RFID event stream due to the total time
order. However, in an out-of-order RFID event stream, it is very difficult to judge whether a
correlated out-of-order RFID primitive event does not occur or arrive due to the disorder of the
RFID event stream, which also adds to the detection difficulty of a complex event over an
out-of-order RFID event stream.

2.3. Related studies on out-of-order event streams
Currently, many complex event processing technologies have been proposed to detect a

complex event from an out-of-order event stream. Babu et al.[13] and Mutschler et al[19]
proposed a method, which is called K-slack, to address the out-of-order arrival of events. Li et
al.[20] first proposed a correctness method based on the latency, output order and result
correctness to address the out-of-order event stream. Then, they proposed two aggressive

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4311

methods and a conservative method to process out-of-order event streams for sequence pattern
queries[14-15]. Tucker et al. [16] and Ding et al. [21] propose to use punctuation technology to
handle out-of-order event streams. Mutschler et al. proposed to use reliable speculation and
adaptive speculation technologies to address out-of-order event streams[17, 22]. Tirthapura et
al. [18]and Cormode et al. [23] proposed to use an approximation-based method to address
out-of-order event streams.

Barga et al. used a spectrum based on consistency levels and performance tradeoffs to
address out-of-order deliveries[24]. In [25], an event processing method based on heartbeats is
presented to address uncoordinated event streams. In [26], an accumulative FPGA
accelerating towards a sliding window is presented for an out-of-order event stream. In [27],
an event querying and matching mechanism with low memory access and a fast response time
was presented. At the end of the paper, they also certified its effectiveness by using an
experimental method. Paul et al. [28] proposed a complex event processing frame that is based
on a speculative rule. Kim et al. proposed a data control method that is based on window
processing technology and a data control method that is based on the time interval between
tuples and their relationships for out-of-order event stream processing [29-30]. Paper [31]
proposed a dataflow model for massive-scale out-of-order event streams. This dataflow model
can balance the correctness, latency and cost for massive-scale out-of-order event streams.
Papers [32-33] present a quality-driven continuous query execution scheme and a
quality-driven processing of sliding window aggregates approach for out-of-order event
stream processing, respectively. In their paper[34], Xiao et al. proposed to use a latency
distance and purging time to perform real-time processing of out-of-order event streams.

All of the existing state-of-the-art methods above for addressing out-of-order events can be
divided into two classes of approaches: the buffering approach and the stream revision
approach. However, the buffering approach requires a long latency for the event ordering,
while the stream revision approach requires large system overloads for the event ordering,
which cause a high memory consumption for an out-of-order event stream. In contrast to the
processing methods above, in this paper, efficient complex event processing based on
INFA-HTS (Improved Nondeterministic Finite Automaton-Hash Table Structure) is presented
for out-of-order RFID event streams based on the analysis and study of the current processing
algorithms described above.

3. Proposed scheme
In this section, we proposed an efficient complex event processing method that is based on

INFA-HTS (Improved Nondeterministic Finite Automaton-Hash Table Structure) for
out-of-order RFID event streams.

3.1. Motivation resource
In our scheme, to solve the detection difficulties exhibited by current detection models

based on automatons that cannot adequately detect out-of-order RFID event streams because
of the uncertain arrival of RFID primitive events and the sequential order restriction of the
NFA model, we proposed an INFA model on the basis of analysis and study the traditional
NFA model. To improve the storing and processing efficiency for the large intermediate
matching results that exist in detection processing, we proposed to use an HTS (Hash Table
Structure) to store and process the large intermediate result. To provide a fast output detection
result, we use hash table search technology to output the desired detection results instead of
depth-first search technology.

http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bHyeon-Gyu+Kim%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr

4312 Wang et al.: An Efficient Complex Event Processing Algorithm based on INFA-HTS for Out-of-order RFID Event Streams

3.2. Working principle of the INFA-HTS algorithm
The basic working principle of our proposed INFA-HTS algorithm is that we first use

INFA (Improved Nondeterministic Finite Automaton) to capture the related primitive events
from an out-of-order RFID event stream, and then, we utilize HTS (Hash Table Structure) to
store and process the large intermediate detection result; last, we use the hash table searching
technology to output the complex event sequences. As a result, the problems of having a long
detection time, high memory consumption and low event throughput, which exist in the
current processing methods for processing out-of-order RFID event streams, can be
effectively solved by our scheme.

3.3. Composition structure of the INFA-HTS algorithm
Fig. 2 is the composition structure of our method. Fig. 2 shows that our proposed

INFA-HTS method contains four important composition parts: Read RFID primitive event,
INFA match, HTS store and process, and output result, which compose our proposed
INFA-HTS method. The Read RFID primitive event mainly executes the reading operation for
the RFID primitive events from an out-of-order RFID event stream. INFA match mainly
executes the capturing operation for the related RFID primitive event from the reading RFID
primitive event above. HTS store and process mainly executes the function of storage and
sorting. Output result mainly realizes the output function of the complex event sequences by
using hash table search technology instead of depth-first search technology.

Read RFID

primitive event
 INFA match HTS store and

process Output result

Fig. 2. Composition structure of the INFA-HTS algorithm

In our suggested method, HTS store and process includes the following functions: RFID
event mapping, RFID event search, RFID event insertion, RFID event storage and RFID event
delete. Where RFID event mapping mainly maps related RFID primitive events into a hash
table structure by using a predefined hash mapping function, RFID event search mainly
determines the right insertion location by the comparing timestamp among the RFID primitive
event. RFID event insertion mainly executes the inserting operation for related RFID primitive
events. RFID event storage mainly uses a hash table structure to store the large intermediate
detection result; HTS delete mainly deletes outdated RFID primitive events.

3.4. Detection process of the INFA-HTS algorithm
Fig. 3 is the detailed detection process of our INFA-HTS algorithm. In Fig. 3, the capital

letters (e.g., E) represent event types. The lower-case letters (e.g., a, b, c) stand for event
instances. For example, bf represents an event instance of event type Eb with attributes f; bf, af,
cf represent RFID primitive event instances of event type Eb Ea Ec with the same associated
attributes. The out-of-order RFID event mainly offers the RFID event resource. It consists of a
series of various event instances. The timestamp refers to the received timestamp of an RFID
primitive event.

The INFA model is an improved nondeterministic finite automaton model and is mainly
used to capture the related out-of-order RFID events. It is constructed by using extending
technology on the basis of an NFA model. Its construction process mainly includes the
following parts: initialization, construct NFA model, traverse NFA model, merge NFA model
and produce INFA model. Initialization mainly makes some necessary preparations before the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4313

program starts to run. Construct NFA model primarily establishes all of the possible NFA
models through given event pattern expressions and realizes the construction function of the
NFA model for out-of-order RFID events. Traverse NFA mainly traverses each constructed
NFA model above by going depth-first from its starting state. Merge NFA mainly executes the
merging function by adding the runtime state of the NFA model into the INFA model for all of
the NFA models. The ①,②,③ ……stand for automata states.

Fig. 3. Detection process of the INFA-HTS algorithm

In our proposed scheme, the hash table mapping function mainly realizes the mapping

function for mapping the same associated attributes of the RFID primitive event into the hash
table address through some predefined rules. Because the related RFID primitive events in an
event pattern expression have the same associated attributes, for example, af, bf, and cf, we can
map af, bf, and cf event instances into the same hash table address through some predefined
rules.

C represents the counter, which is used to calculate the number of related RFID primitive
events in the main node. In our proposed scheme, we must execute the output operation only
when the counter value of the main node in the main chain is equal to the length value of the
INFA. The tmin represents the minimum time of the RFID primitive event in the child chain. In
our proposed scheme, we can output complex events by hash table search technology when the

Hash table
address

0

1

2

3

4

5

6

Ef

aaf

bbf

ccfbaq

afbf aqcf af bqRFID event stream …

INFA Mathcing

afbfcf

 bf

 af

 aq

 cf

 af

 cq

…

 bq

RFID
primitive

event
mapping

t

C tmin

C tmin

C tmin

Eq

Ep

…

…

t

t

t

t

…

aaq

taap
…

m
ap

pi
ng

mapping

mapping

m
ap

pi
ng

mapping

1 2

a

b
c

0 3 4c a b
7

5 6
b c

a

c

b

a

2

1

3

1

3

cq

caq t2 aqbqcq

cf

 cf mapping

mapping

2 1 3 4 5 7 6 8 …Timestamp

Event instance

4314 Wang et al.: An Efficient Complex Event Processing Algorithm based on INFA-HTS for Out-of-order RFID Event Streams

timestamp of the current RFID primitive event - the minimum timestamp tmin of the main node
in the main chain < Time Window.

The main node designed consists of event type E, counter C, minimum timestamp tmin and
pointers. The child node includes the event instance, timestamp of the event instance and
pointers.

In our scheme, after using INFA (Improved Nondeterministic Finite Automaton) to
capture the related primitive events from an out-of-order RFID event stream, we utilize HTS
(Hash Table Structure) to store and process the large intermediate detection result, and last, we
use hash table searching technology to output the complex event sequences. RFID event
mapping, RFID event search, RFID event insertion, RFID event storage, RFID event delete
and RFID event output technologies are used to reduce the many searching, inserting, sorting,
comparing operations, which improves the processing performance. We realize the
out-of-order RFID event sorting operations by comparing the timestamp of the RFID event on
the basis of taking good advantage of the hash table search and hash table insertion technology
in this paper. The detailed detection process is shown in Fig. 3.

3.5. Realizing the steps of the INFA-HTS algorithm
Realizing the steps for our proposed INFA-HTS algorithm can be summed up in the

following steps:
Step 1, build the corresponding INFA according to complex event expression and calculate

its length, and in addition, create and initialize a new hash table.
Step 2, read the RFID primitive event from the out-of-order RFID event stream.
Step 3, judge whether the RFID primitive event is accepted by INFA. If yes, jump to step 4

to operate; otherwise, skip to step 2 to operate.
Sep 4, map the event type of the RFID primitive event into the corresponding hash array by

using a predefined hash mapping function and judge whether it already exists in the
hash array by searching for the event type. If not, then first add a main node in a main
chain of this hash array. The main node includes the event type, primitive event
counter and minimum timestamp, where the event type refers to the event type of this
RFID primitive event. The primitive event counter mainly counts the number of
primitive events in the child node, and the minimum timestamp mainly records the
minimum time of the RFID primitive event in the child chain. Second, add a child
node in a child chain according to the timestamp order, which includes only the event
type and the timestamp of the RFID primitive event. If yes, then only add a child node
in the right location of the child chain with the event type and the timestamp of the
primitive event by comparing the timestamp of this RFID primitive event with other
primitive events in succession.

Step 5, judge whether the counter value of the main node in the main chain is equal to the
length value of the INFA. If yes, then jump to step 7 to operate; otherwise, skip to step
2 to execute next.

Step 6, judge the timestamp of the RFID primitive event - the minimum timestamp of the
main event node in the main chain < Time Window. If yes, then output the complex
event by hash table search technology. Otherwise, skip to step 3 to execute next.

Algorithm 1 is the partial pseudo code of the INFA-HTS algorithm. It mainly includes
Read RFID primitive event, INFA match, HTS store and process, and Output result, which are
four functions, and is realized by using Build_INFA(), read(), hash_array(), compare(),
search_hash_table(), and so on. It is the use of the function above that allows us to achieve our
suggested algorithm in this paper.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4315

Partial pseudo code of the INFA-HTS algorithm

Algorithm1:complex event processing algorithm based on INFA_HTS
 Input: out_of_order RFID stream S, matching expression Q ,
hash function H
 Output: event sequence M

 (1) initialization
 (2) Build_INFA Q ;
 (3) Calculate_INFA_length();
 (4) Create_initialize_hashtable();
 (5) read ei S
 (6) if(ei is accepted by INFA) then
 (7) hash array H(ei)
 (8) search E(ei)
 (9) if(E(ei) is not in hast array) then
 (10) Mainnode { Eei,C,Tmix}
 (11) childNode { Eei,tei};
 (12) Tmix tei;
 (13) Counter+1;
 (14) end if
 (15) else then
 (16) Compare(ei,ei-1)
 (17) add childNode { Eei,tei};
 (18) if (tei<Tmix) then
 (19) Tmix tei;
 (20) end if
 (21) Counter +1;
 (22) if(value of C == value of ENFA) then
 (23) if(tei - Tmin<Time Window) then
 (24) M Search_hash_table() ;
 (25) return M;
 (26) else then
 (27) go to (5)
 (28) else then
 (29) go to (5)
 (29) else
 (30) go to (5)

3.6. Instance study of the INFA-HTS algorithm
Taking the detection of the complex event expression SEQ (A, B, C) from an out-of-order

RFID event stream, for example, to illustrate the detailed realization process for our proposed
method.

In step 1, build the corresponding INFA according to the complex event expression SEQ
(A, B, C), which is shown in Fig. 3, and calculate its length value for 3, and in
addition, create and initialize a new hash table.

Detect RFID primitive event bf:
In step 2, read the RFID primitive event bf from the out-of-order RFID event stream.
In step 3, because the RFID primitive event bf can be accepted by INFA, the detection

program jumps to step 4 to execute next.
In step 4, map the event type Ef of the RFID primitive event bf into the corresponding hash

array by using a predefined hash mapping function. Because there is no event type
Ef in this hash array by searching the event type Ef, the detection program first adds
an event node in the main chain of the corresponding hash array, which includes the
event type Ef of the primitive event bf, the primitive event counter C and the
minimum time stamp tmin. Then, add a child node in a child chain with an event type
baf of the primitive event bf and a timestamp tb of the primitive event bf. Last, the
detection program increases by 1 for the value of the primitive counter C and
updates the minimum timestamp tmin with tb.

In step 5, because the value of counter C in the main node (1) is not equal to the length of
the value of INFA (3), the detection program skips to step 2 to execute next.

4316 Wang et al.: An Efficient Complex Event Processing Algorithm based on INFA-HTS for Out-of-order RFID Event Streams

 Detect RFID primitive event af:

In step 2, read the primitive event af from the out-of-order RFID event stream.
In step 3, because the primitive event af can be accepted by INFA, the detection program

jumps to step 4.
In step 4, map event type Ef of primitive event af into the corresponding hash array by using

a predefined hash mapping function. Because there is already an event type Ef in
the main chain of the corresponding hash array, searching the event type Ef,
detection program, first adds a child node with event type abf of primitive event af
and time stamp ta in the precursor of the bf event by judging ta< tb and, second,
adds the value of counter C for 2.

In step 5, because the value of counter C in main node (2) is not equal to the length value of
INFA(3), the detection program still skips step 2, Additionally, it updates the
minimum timestamp tmix with ta.

Detect RFID primitive event cf;
In step 2, read the primitive event cf from the out-of-order RFID event stream.
In step 3, because the primitive event cf can be accepted by INFA, the detection program

jumps to step 4.
In step 4, map the event type Ef of the RFID primitive event cf into the corresponding hash

array by using the predefined hash mapping function. Because there is already an
event type Ef in the main chain of the corresponding hash array by searching the
event type Ef, the detection program first only adds a child node with event type ccf
of RFID primitive event cf and timestamp tc of RFID primitive event cf
subsequent to event bf by comparing ta<tb< tc. Second, the detection program adds
the value of counter C to 3.

In step 5, because the value of counter C in the main node (3) is equal to the length value of
INFA(3), the detection program jumps to step 6 to execute next.

In step 6, because the timestamp tc of RFID, the primitive event cf - the minimum
timestamp in main node< Time Window, and detection program outputs a
complex event af bf cf by using hash table search technology.

The other RFID primitive events over the out-of-order RFID event stream, such as af, cq, bq,
and so on, can be detected by a detection method similar to the above.

4. Experimental Results and Analysis
 In this section, to verify the effectiveness of our proposed method above, we perform some

experiments. Our designed experiments mainly include four parts: build experimental
environment, test average execution time, average memory consumption, average application
latency, average accuracy rate and average event throughput in different out-of-order event
stream percentages.

4.1. Build experimental environment
Our simulation environment was conducted on two Windows PCs with Microsoft Windows 7
operating systems, AMD A6-3420M 4 core CPU Processors, 2 G of memory and a 500 G hard
disk. One PC is used to generate the event streams and send out the event streams to the other
PC, which is used as an event query engine. In our experiment, we use the Visual C++ 6.0 tool
to develop an event generator. This event generator can be configured with parameters as
listed in Table 1. The input event stream includes events of 10 different event types. Each

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4317

event source can send out event instances with the same type. The event distributes among
event types A to J.

Table 1. Main experimental parameters in our experiment
Parameter name parameter value

Bit number of hash table 1~10
Sliding window size 40

Number of event types 10
Sequence queries expression SEQ(A, B, !C, D, E, F, G)
Length of sequence queries 7

Out-of-order event percentage of event type 0~50(%)
Maximum arrival delay of event type 10 time unit

Size of event stream 105
Number of attributes of each event 2

POGs percentage. 20%

In our experiment, we select SEQ(A, B, !C, D, E, F, G) as the testing sequence queries for
all of the experiments, and the length of the testing sequence queries is set to 7. To keep the
memory consumption and the overhead of POGs relative small, se set the percentage of POGs to 20%. The
comparison indicators in our experiment are selected for processing time, accuracy rate,
average application latency, memory consumption and event throughput. The processing time
refers to the total executed time for addressing the whole out-of-order event stream. The
accuracy rate denotes the accuracy for outputting the desired results from the out-of-order
event streams. The average application latency refers to the average time difference between
the sequence output time and the maximum arrival time of the event instances, which compose
the sequence result. The memory consumption refers to the total used memory for addressing
the out-of-order event streams. The event throughput refers to the output desired result from
the out-of-order event streams.

The Conservative method, Aggressive method and K-slack method are selected as our
comparison methods in our experiment, whereas the aggressive method is mainly used to
produce a maximal output when the out-of-order event arrival is rare. To tackle any premature
erroneous result generation when an out-of-order event arrives, appropriate error
compensation methods are designed for this method. The conservative method is mainly used
to produce a guaranteed output when out-of-order events are common. To guarantee the
correctness result, a POGs model is proposed to guarantee the result correctness. K-slack
algorithms are mainly used to buffer the arriving data for K time units because it generally
assumes that the event might arrive out-of-order at most by some constant K time units. The
out-of-order event percentage in each event stream is defined as follows: Out-of-order event
percentage=the total number of out-of-order events/the total number of instances received by
our processing system.

The accuracy rate can is defined as follows: Accuracy rate=(the number of pattern-matching
results on the ordered event stream∩ the number of pattern-matching results over the
out-of-order event stream)/ the number of pattern-matching results over the ordered event
stream. The average application latency can be defined as follows: Average application
latency=∑(the time of sequence output from our system − the maximum event arrival
time)/Number of event types. The detailed experimental results are shown next.

4318 Wang et al.: An Efficient Complex Event Processing Algorithm based on INFA-HTS for Out-of-order RFID Event Streams

4.2 Test average execution time
In this subsection, we evaluate the average execution time of our proposed scheme with the

other three general methods in different out-of-order event stream percentages. Fig. 4 shows
the experimental results.

From Fig. 4, we can see clearly that our proposed algorithm shows the least execution time
of the four methods. The Aggressive algorithm follows. The K-slack method costs the largest
average execution time. The reasons for these findings are that, in our scheme, we first use
INFA to reduce the capturing operations for the related out-of-order events, which can save
much constructing and capturing time. Second, we use a hash table structure to store and
address the large intermediate capturing results by using hash mapping, searching and
inserting technologies, which can save a large number of execution operations for disordered
events, therefore saving a large amount of average execution time. The K-slack strategy
consumes the largest average execution time due to its many waiting operations for the
maximum delay before processing. The aggressive algorithm spends less average execution
time at the lower out-of-order event percentage compared with the conservative method, but
when there is an increase in the out-of-order events percentage and when it reaches a certain
threshold (e.g., 40% in this experiment), it starts to require more average execution time than
the conservative strategy because of its extra recomputation operations for compensation
tuples. The conservative method shows the opposite performance compared with the
aggressive method.

0 10 20 30 40 50
0

50

100

150

200

Ex
ec

ut
io

n
tim

e(
m

s)

Out-of-order event stream percentage(%)

 K-slack
 Aggressive
 Consavative
 Our

Fig. 4. Execution time in different out-of-order event data percentages

4.3. Testing the average memory consumption
In this subsection, we test the average memory consumption for our suggested scheme. The

testing results are shown in Fig. 5.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4319

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

m
em

or
y c

on
su

m
pt

io
n

Out-of-order event stream percentage(%)

 K-slack
 Aggressive
 Conservative
 Our

Fig. 5. Memory consumption in different out-of-order event data percentages

From Fig. 5, we can observe that our proposed method presents a good average memory

consumption savings rate compared to the other three methods. The Conservative strategy
follows. The aggressive solution and K-slack solution show the highest average memory
consumption among the four approaches. The reasons for these findings are the following: In
our scheme, on the one hand, an INFA model is established to reduce the capturing operation
for the related out-of-order events, which can save much capturing memory for out-of-order
events. On the other hand, the hash table structure is used to process the large intermediate
capturing results, which can reduce the many inserting, storing and comparing operations of
the related primitive events by applying hash mapping technology, thus also saving a large
amount of processing memory. The Conservative method presents a low average memory
consumption because the POGs in the conservative method can help the system to purge the
related event instances over time, which can result in larger savings in memory. Because the
aggressive solution must generate more recomputations for compensation tuples with more
arrivals of out-of-order events, more memory is consumed. The K-slack strategy has a high
average memory consumption because of its waiting operations for the maximum delay before
processing.

4.4. Testing the average application latency
In this subsection, we mainly evaluate the performance of the average application latency

for our proposed scheme. Fig. 6 shows the testing results of the average application latency in
different out-of-order event data percentages.

4320 Wang et al.: An Efficient Complex Event Processing Algorithm based on INFA-HTS for Out-of-order RFID Event Streams

0 10 20 30 40 50
0

500

1000

1500

2000

Av
er

ag
e

ap
pl

ica
tio

n
la

nt
an

cy

Out-of-order event data percentage(%)

 K-slack
 Aggressive
 Conservative
 Our

Fig. 6. Average application latency in different out-of-order event data percentages

From Fig. 6, we can observe that our proposed method presents the least average

application latency compared with the other three methods, with the same percentage of
out-of-order percentage. The aggressive and conservative algorithms follow. The K-slack
strategy shows the largest average application latency of the four approaches. The reasons for
these findings are the following: In our scheme, first, an INFA model is established to reduce
the capturing operation for the related out-of-order events, which can save a large amount of
capturing latency for out-of-order events; Second, a hash table structure is used to process the
large intermediate capturing results, which can reduce many of the inserting, storing and
comparing operations of related primitive events by applying hash mapping technology, thus
also saving a large amount of processing latency. Because the K-slack strategy must wait for
the maximum delay before processing, this arrangement leads to a large average application
latency. The aggressive solution shows a small average application latency compared with the
conservative strategy when the out-of-order percentage of event is relatively low, but with the
increase in the out-of-order events percentage, when it reaching a certain threshold (e.g., 40%
in this experiment), it starts to generate the largest latency compared with the conservative
strategy. The reason is that the aggressive solution must generate more recomputations for
compensation tuples with the arrival of out-of-order events, which delays the generation of the
sequence results. In contrast, the average application latency of the conservative method
presents a decrease with an increment in the out-of-order percentage of events. This finding
occurs because the application latency is mainly determined by POGs in the conservative
method, which can help the system to purge the related event instances over time.

4.5. Testing the average accuracy rate
In this subsection, we evaluate the average accuracy rate of our proposed scheme. The

testing results of the average accuracy rate for the four methods in different out-of-order event
stream percentages are shown in Fig. 7.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4321

0 10 20 30 40 50
0

20

40

60

80

100

Ac
cu

ra
cy

 ra
te

(%
)

Out-of-order event stream percentage(%)

 K-slack Aggressive
 Conservative Our

Fig. 7. Accuracy rate with different out-of-order event data percentages

Fig. 7 reveals that our algorithm has a similar average accuracy rate as the conservative

method and K-slack. The aggressive algorithm shows the worst accuracy rate of the four
methods. The reasons can be explained as follows: In our proposed scheme, a hash table
structure is used to process the large out-of-order capturing results by taking advantage of the
searching, inserting, storing and comparing functions of hash table technology after using the
INFA model to capture the related out-of-order events, which can reduce many wrong
operations, thus keeping up the high average accuracy rate. The K-slack method can achieve
an average good accuracy rate due to its setting a high value for K, which can reduce many
erroneous results, but at the same time, it sacrifices an enormous processing time, memory
consumption and application latency. The conservative method can realize a high accuracy rate
because it can take good advantage of POGs to guarantee the correctness of the output by
reducing many of the of operator states and generated results, thereby having a high accuracy
rate of the detection results with the increase in the out-of-order events percentage. The
aggressive algorithm shows a low accuracy rate in the out-of-order events percentage because
of the use the aggressive strategy in its methods. It needs to use an error compensation
mechanism to tackle any premature erroneous result generation when each out-of-order event
appears, thereby influencing its accuracy rate.

4.6. Testing the average event throughput
In this subsection, we evaluate the average event throughput of our proposed scheme. Fig.

8 shows the experimental results.

4322 Wang et al.: An Efficient Complex Event Processing Algorithm based on INFA-HTS for Out-of-order RFID Event Streams

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

ev
en

t t
hr

ou
gh

pu
t

Out-of-order event stream percentage(%)

 K-slack
 Aggressive
 Conservative
 Our

Fig. 8. Event throughput in different out-of-order event data percentages

From Fig. 8, we can see clearly that our proposed algorithm shows a good average event

throughput for the four methods. The aggressive algorithm and conservative method follow.
The K-slack method presents the worst processing performance. The reasons for these
findings are that in our scheme, we use INFA and hash table structure to reduce the capturing,
storing and processing operations for the related out-of-order events, therefore improving its
whole processing speed. The aggressive algorithm outputs a high average event throughput
due to the aggressive strategy in its method, while the conservative method has a good event
throughput due to its conservative strategy. The K-slack strategy shows the worst processing
performance because of its long waiting operations for the maximum delay before processing.
Fig. 8 also shows that the processing times in the four methods all present an increase with
growth in the out-of-order event stream percentages, but our suggested method increases in a
relatively flat way compared with the other algorithms.

In addition, from Fig. 4 through 8 above, we can obtain the conclusion that the four
methods above have their own different applicability scopes. The aggressive solution is more
suitable for the scene with low out-of-order events. The conservative aggressive is better fit to
the scene with a high out-of-order event. The K-slack method is better to use in an
environment that has a constant latency. However, our proposed scheme in this paper can
apply to all of the scenes and obtains better processing results.

5. Conclusions
In this paper, an efficient complex event processing scheme is presented for an

out-of-order RFID event stream. In our scheme, first, we use INFA to capture the related
primitive events from the out-of-order RFID event stream. Second, we use HTS to store and
process the large intermediate detection result. As a result, some of the problems that exist in
some of the current methods can be effectively solved by our scheme. The simulation
experiments demonstrate the effectiveness of our proposed approach in terms of the execution
time, memory consumption, application latency, accuracy rate, and event throughput compared
with some of the current general processing methods.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4323

References
[1] Wang Z, Ye N and Malekian R, et al. “Measuring the similarity of PML documents with

RFID–based sensors,” International Journal of Ad Hoc and Ubiquitous Computing, vol.17, no.2-3,
pp. 174-185, 2014. Article (CrossRef Link).

[2] Wang Z, Ye N, Malekian R, et al. “TMicroscope: Behavior Perception Based on the Slightest
RFID Tag Motion,” Elektronika ir Elektrotechnika, vol.22, no.2, pp.114-122, 2016.
Article (CrossRef Link).

[3] Ye N, Wang Z and Malekian R, et al. “A method for driving route predictions based on hidden
Markov model,” Mathematical Problems in Engineering, 2015, 2015. Article (CrossRef Link).

[4] Del G, Eugene W, Hee J, et.al. “SASE: Complex Event Proeessing over Streams,” in Proc. of 3rd
Biennial Conference on Innovative Data Systems Researeh, pp.407-411, Dec 20-22, 2007.
Article (CrossRef Link).

[5] L. Bai, S. Lao, A. F. Smeaton, N. E. O’Connor, D. A. Sadlier, and D. Sinclair, “Semantic analysis
of field sports video using apetrinet of audio-visual concepts,” Computer, vol.52, no.7, pp.808-823,
2009. Article (CrossRef Link).

[6] Xiangwei Sun, Rong Chen, Zhenjun Du. “Composite Event Detection Based on Automata,” in
Proc. of 2009 IEEE International Conference on Intelligent Human-Machine Systems and
Cybernetics, pp. 160-163, Aug 26-27, 2009. Article (CrossRef Link).

[7] Y Mei, S Madden, “ZStream: A cost-based query processor for adaptively detecting composite
events,” in Proc. of the SIGMOD2009. Providence, USA, pp.193-206, June 28-29, 2009.
Article (CrossRef Link).

[8] F Wang, S Liu, P. Liu, “Bridging physical and virtual worlds: complex event processing for RFID
data streams,” in Proc. of the 10th International Conference on EDBT, pp. 588- 607. March 26-31,
2006. Article (CrossRef Link).

[9] C Zang, Y Fan, “Complex event processing in enterprise information systems based on RFID,”
Enterprise Information Systems, vol.1, no.1, pp.3-23, 2007. Article (CrossRef Link).

[10] Liu H Y, Li J H, “The study and application of tree-based RFID complex event detection
algorithm,” in Proc. of the Second International Symposium on Web Information Systems and
Application, Nanchang , China, pp.520-524, May 22-24, 2009. Article (CrossRef Link)

[11] Ke J, Zhan Y Z, Chen X J, et al. “Detection of complexity video event based on hypergraph
model,” Application Research of Computers, Vol.29, no.12, pp.4770-4774, 2012.
Article (CrossRef Link).

[12] Bai L, Lao S, Smeaton A F, et al. “Semantic analysis of field sports video using apetrinet of
audio-visual concepts,” Computer Journal, vol.52, no.7, pp. 808-823, 2009.
Article (CrossRef Link).

[13] Babu S, Srivastava U. and Widom J., “Exploiting k-Constraints to Reduce Memory Over-Head in
Continuous Queries over Data Streams,” ACM Transitionson Database Systems, Vol. 29, No.3, pp.
545_580, 2004. Article (CrossRef Link).

[14] Liu M, Li M, Golovnya D, Rundensteiner E A and Claypool K. “Sequence Pattern Query
Processing over Out-of-Order Event Streams,” in Proc. of 2009 ICDE, Shanghai, China, pp.
784-795, March 29-April 2, 2009. Article (CrossRef Link).

[15] Wei M. and Liu M, “Supporting a Spectrum of Out-of-Order Event Processing Technologies:
From Aggressive to Conservative Methodologies,” in Proc. of 2009 SIGMOD, Providence, U S A,
pp. 1031-1033, June 29-July1, 2009. Article (CrossRef Link).

[16] Tucker P A, Maier D, Sheard T and Fegaras, L.,“Exploiting Punctuation Semantics in
ContinuousData Streams,” IEEE Transactions on Knowledge and Data Engineering, Vol. 15, No.
3, pp. 555-568 ,2003. Article (CrossRef Link).

[17] C Mutschler, “Adaptive Speculative Processing of Out-of-Order Event Streams,” ACM
Transactions on Internet Technology, vol.14, no.1, pp.4-8, 2014. Article (CrossRef Link).

[18] S. Tirthapura and D. P. Woodruff, “A general method for estimating correlated aggregates over a
data stream,” Algorithmica, Vol.73, no.2, pp.235-260, October 2015. Article (CrossRef Link).

[19] C Mutschler, M Philippsen, “Distributed Low-Latency Out-of-Order Event Processing for High

http://dx.doi.org/doi:10.1504/IJAHUC.2014.065764
http://dx.doi.org/doi:10.5755/j01.eie.22.2.14603
http://arxiv.org/abs/cs/0612128
http://dx.doi.org/doi:10.1093/comjnl/bxn058
http://dx.doi.org/doi:10.1109/ihmsc.2009.48
http://dx.doi.org/doi:10.1145/1559845.1559867
http://dx.doi.org/doi:10.1007/11687238_36
http://dx.doi.org/doi:10.1080/17517570601092127
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bHongying+Liu%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bJunhuai+Li%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://academypublisher.com/proc/wisa09/papers/wisa09p520.pdf
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bKe+Jia%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bZhan+Yong-zhao%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bChen+Xiao-jun%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr
https://xueshu.glgoo.org/scholar?q=Detection+of+complexity+video+event+based+on+hypergraph+model&btnG=&hl=zh-CN&as_sdt=0%2C5
http://dx.doi.org/doi:10.1093/comjnl/bxn058
http://delivery.acm.org/10.1145/1020000/1016032/p545-babu.pdf?ip=125.88.25.51&id=1016032&acc=ACTIVE%20SERVICE&key=BF85BBA5741FDC6E%2E27CB6F9C2BDA4F06%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=652154902&CFTOKEN=59418481&__acm__=1470371101_f3373327ea6786c953ce994f46b5e4e5
http://dx.doi.org/doi:10.1109/icde.2009.95
http://delivery.acm.org/10.1145/1560000/1559973/p1031-wei.pdf?ip=125.88.25.51&id=1559973&acc=ACTIVE%20SERVICE&key=BF85BBA5741FDC6E%2E27CB6F9C2BDA4F06%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=652154902&CFTOKEN=59418481&__acm__=1470371775_bbb1637fcf580fcb47374053016d83a3
http://dx.doi.org/doi:10.1109/TKDE.2003.1198390
http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7bMutschler%2C+Christopher%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://dx.doi.org/doi:10.1145/2633686
http://link.springer.com/journal/453/73/2/page/1
http://dx.doi.org/doi:10.1007/s00453-014-9917-1
http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7bMutschler%2C+C.%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7bPhilippsen%2C+M.%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr

4324 Wang et al.: An Efficient Complex Event Processing Algorithm based on INFA-HTS for Out-of-order RFID Event Streams

Data Rate Sensor Streams,” in Proc. of IEEE 27th International Symposium on Parallel and
Distributed Processing, Boston, pp.1133-1144, May 20-24, 2013. Article (CrossRef Link).

[20] M Li, M Liu. L P Ding, et al. “Event stream processing with out-of-order data arrival,” in Proc. of
27th International Conference on Distributed Computing Systems Workshops, pp. 67-67, Toronto,
June 22-29, 2007. Article (CrossRef Link).

[21] L Ding, N Mehta E A. Runden steiner, and G. T. Heineman, “Joining punctuated streams,” EDBT,
pp. 587-604, March 14-18, 2004. Article (CrossRef Link).

[22] C Mutschler, M Philippsen, “Reliable speculative processing of out-of-order event streams in
generic publish/subscribe middlewares,” in Proc. of the 7th ACM International Conference on
Distributed Event-Based Systems, Arlington, United states, pp.147-158, June 27-29, 2013.
Article (CrossRef Link).

[23] Cormode G, Korn F, Tirthapura S, “Time-decaying aggregates in out-of-order streams,” in Proc.
of PODS, Vancouver, Canada, pp.89–98, June 9-12, 2008. Article (CrossRef Link).

[24] R S Barga et. al. “Consistent streaming through time: A vision for event stream processing,” in
Proc. of 3rd Biennial Conference on Innovative Data Systems Research, pp. 363–374, January
7-10, 2007. Article (CrossRef Link).

[25] J. Kr amer and B. Seeger, “Semantics and implementation of continuous sliding window queries
over data streams,” ACM Trans. Database Syst, vol.34, no.1, pp.4:1-4:49, 2009.
Article (CrossRef Link).

[26] Y Oge, M Yoshimi T Miyoshi, et al. “Wire-Speed Implementation of Sliding-Window Aggregate
Operator over Out-of-Order Data Streams,” in Proc. of IEEE 7th International Symposium on
Embedded Multicore Socs, pp.55-60, Sept 26-28, 2013. Article (CrossRef Link).

[27] K Wang, Y Yu. “A query–matching mechanism over out–of–order event stream in IOT,”
International Journal of Ad Hoc and Ubiquitous Computing, vol.13, no.3, pp.197-208, 2013.
Article (CrossRef Link).

[28] R Fodor, D Anicic, S Rudolph, “Results on Out-of-Order Event Processing,” in Proc. of 13th
International Symposium. New York, pp.220-234, January24-25, 2011. Article (CrossRef Link).

[29] H G Kim, W L Kang, M H Kim, “Efficient Window Processing over Disordered Data Streams,”
IEICE Transactions on Information and Systems, vol.E93D, no.3, pp.635-638, 2010.
Article (CrossRef Link).

[30] H G Kim, C Kim, M H Kim, “Adaptive disorder control in data stream processing,” Computing
and Informatics, vol. 31, no. 2, pp.393-410, 2012. Article (CrossRef Link).

[31] Akidau T, Bradshaw R, Chambers C, et al. “The dataflow model: a practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing,” in Proc.
of the VLDB Endowment, vol.8, no.12, pp.1792-1803, 2015. Article (CrossRef Link).

[32] Ji Y, Zhou H, Jerzak Z, et al. “Quality-Driven Continuous Query Execution over Out-of-Order
Data Streams,” in Proc. of the 2015 ACM SIGMOD International Conference on Management of
Data, pp. 889-894, May 25-27, 2015. Article (CrossRef Link).

[33] Ji Y, Zhou H, Jerzak Z, et al. “Quality-driven processing of sliding window aggregates over
out-of-order data streams,” in Proc. of the 9th ACM International Conference on Distributed
Event-Based Systems, ACM, pp.68-79, 2015. Article (CrossRef Link).

[34] Xiao Y, Jiang T, Shen Y, et al. “Efficient Strategy for Out-of-Order Event Stream Processing,”
Journal of Applied Science and Engineering, vol.17, no.1, pp.73-80, 2014.
Article (CrossRef Link).

http://dx.doi.org/%20doi:10.1109/ipdps.2013.29
http://dx.doi.org/doi:10.1109/icdcsw.2007.35
http://davis.wpi.edu/dsrg/PROJECTS/CAPE/publication/pjoin.pdf
http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7bMutschler%2C+Christopher%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7bPhilippsen%2C+Michael%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://dx.doi.org/doi:10.1145/2488222.2488263
http://dx.doi.org/doi:10.1145/1376916.1376930
https://arxiv.org/ftp/cs/papers/0612/0612115.pdf
https://files.ifi.uzh.ch/dbtg/ndbs/HS12usfduj/KS09.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6657904
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6657904
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6657904
http://dx.doi.org/doi:10.1109/mcsoc.2013.23
http://inderscience.metapress.com/content/e0t7311340722206/
http://inderscience.metapress.com/content/119852/?p=34aeb00f0ca74cb09f12cb1f30640628&pi=0
http://dx.doi.org/doi:10.1504/IJAHUC.2013.055453
http://link.springer.com/search?facet-author=%22Paul+Fodor%22
http://link.springer.com/search?facet-author=%22Darko+Anicic%22
http://link.springer.com/search?facet-author=%22Sebastian+Rudolph%22
http://dx.doi.org/doi:10.1007/978-3-642-18378-2_18
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bHyeon-Gyu+Kim%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bWoo-Lam+Kang%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bMyoung-Ho+Kim%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://search.ieice.org/bin/summary.php?id=e93-d_3_635
http://dx.doi.org/doi:10.14778/2824032.2824076
http://dx.doi.org/doi:10.1145/2723372.2735371
http://dx.doi.org/doi:10.1145/2675743.2771828
http://www2.tku.edu.tw/%7Etkjse/17-1/09-IE10202_914.pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4325

JianHua Wang was born on February 6, 1982 in Guangdong, China. He received his
B.S degree in Electronic Information Science and Technology from Shaoguan University,
Guangdong, China, in 2006. He received his Ph.D degree in Control Science and
Engineering at Guangdong University of Technology, Guangdong, China, in 2015.
Currently he is a teacher of college of electronic engineering, south china agricultural
university, Guangzhou, China. His research interests include wireless video transmission,
cyber-physical systems and IoT.

Tao Wang was born on October 21, 1983. He received the PHD Degree in network
security from Sun Yat-Sen University, Guangzhou, China, in 2010. Currently he is a
teacher of College of Automation, Guangdong University of Technology, Guangzhou,
China. His current research interest includes context-aware computing, service
composition, protocol optimization in wireless sensor network and cyber-physical
system.

LiangLun Cheng was born on August 22, 1964 in Hubei. He received his M.S and
Ph.D degrees from Huazhong University of Science and Technology, Hubei, China in
1992 and Chinese academy of Sciences Jilin, china in 1999 respectively. He is a Prof and
doctoral supervisor of Guangdong University of Technology. His research interests
include RFID and WSN, IoT and CPS, production equipment and automation of the
production process, embedded system, the complex system modeling and its optimization
control, software of automation and information, etc

Shilei Lu was born on January 17, 1984. He received his B.S. degree in electrical
automation engineering from Northeastern University, Qinhuangdao, China, in 2006 and
received his PHD Degree from Sun Yat-Sen University in 2013. Currently he is a teacher
of college of electronic engineering, south china agricultural university, Guangzhou,
China. His research interests include Agricultural Internet of things and intelligent
optimization, RFID network security based on IOT.

	[1] Wang Z, Ye N and Malekian R, et al. “Measuring the similarity of PML documents with RFID–based sensors,” International Journal of Ad Hoc and Ubiquitous Computing, vol.17, no.2-3, pp. 174-185, 2014. Article (CrossRef Link).
	[2] Wang Z, Ye N, Malekian R, et al. “TMicroscope: Behavior Perception Based on the Slightest RFID Tag Motion,” Elektronika ir Elektrotechnika, vol.22, no.2, pp.114-122, 2016.
	Article (CrossRef Link).
	[3] Ye N, Wang Z and Malekian R, et al. “A method for driving route predictions based on hidden Markov model,” Mathematical Problems in Engineering, 2015, 2015. Article (CrossRef Link).
	[10] Liu H Y, Li J H, “The study and application of tree-based RFID complex event detection algorithm,” in Proc. of the Second International Symposium on Web Information Systems and Application, Nanchang , China, pp.520-524, May 22-24, 2009. Articl...
	[11] Ke J, Zhan Y Z, Chen X J, et al. “Detection of complexity video event based on hypergraph model,” Application Research of Computers, Vol.29, no.12, pp.4770-4774, 2012.
	Article (CrossRef Link).
	[23] Cormode G, Korn F, Tirthapura S, “Time-decaying aggregates in out-of-order streams,” in Proc. of PODS, Vancouver, Canada, pp.89–98, June 9-12, 2008. Article (CrossRef Link).

