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Abstract 
 

With the aim of solving the problems of long processing times, high memory consumption and 
low event throughput in the current processing approaches in out-of-order RFID event streams, 
an efficient complex event processing method based on INFA-HTS (Improved 
Nondeterministic Finite Automaton-Hash Table Structure) is presented in this paper. The 
contribution of this paper lies in the fact that we use INFA and HTS to successfully realize the 
detection of complex events for out-of-order RFID event streams. Specifically, in our scheme, 
to detect the disorder of out-of-order event streams, we expand the traditional NFA model into 
a new INFA model to capture the related RFID primitive events from the out-of-order event 
stream. To high-efficiently manage the large intermediate capturing results, we use the HTS to 
store and process them. As a result, these problems in the existing methods can be effectively 
solved by our scheme. The simulation results of our experiments show that our proposed 
method in this paper outperforms some of the current general processing approaches used to 
process out-of-order RFID event streams. 
 
 
Keywords: Complex event processing, Out-of-order, RFID event stream, NFA, Hash table 
structure 

 
This research was supported by the Joint Funds of the National Natural Science Foundation of China (No. 
U1201251). The Youth Science Foundation project of National Natural Science Foundation of China (No. 
61502110) and (No.61602187). The science and technology projects in Guangdong Province 
(No.2016A020209007)and  (No.2016A020210088), (No.2015A010103014)and(No.2015A020209161), The 
project of Natural Science Foundation of Guangdong Province (No. 2016A030310453). 
 
http://dx.doi.org/10.3837/tiis.2016.09.016                                                                                                          ISSN : 1976-7277 

mailto:wangjianhua655@163.com
mailto:wangtaosea@msn.com
mailto:llcheng@gdut.edu.cn
mailto:lvshilei@scau.edu.cn


4308          Wang et al.: An Efficient Complex Event Processing Algorithm based on INFA-HTS for Out-of-order RFID Event Streams 

1. Introduction 

RFID radio frequency identification) technology is a non-contact automatic identification 
technology that uses radio frequency communications to achieve data acquisition. With its 
rapid development, RFID technology has been increasingly adopted in many fields, ranging 
from RFID tracking for supply chain management to industrial manufacturing monitoring. 
The wide distributions of RFID devices generate massive RFID event streams.  

Because the massive RFID events generated by RFID devices are primitive events, and the 
semantic information inside the primitive events is limited, we can obtain only simple 
information from them. However, in real applications, we usually pay more attention to 
complex information. For example, we focus on mining customers’ behaviours[1], predicting 
a vehicle’s route[2], or measuring the similarity of PML documents[3] from a massive RFID 
event stream. Thus, how to quickly obtain valuable information from a massive event stream 
becomes a very important challenge when processing the event stream. Because Complex 
Event Processing (CEP) [4] technology can pick up valuable information from a massive 
RFID event stream by using the association between event attributes, matching rules and 
algebraic operations, CEP has recently obtained increasing attention in the field of event 
stream processing. 

Recently, many complex event processing schemes have been studied to detect a complex 
event-over-event stream, such as a complex event detection method based on a diagram[5], a 
complex event detection method based on a tree[6], a complex event detection method based 
on finite automatons[7], a complex event detection method based on petri-nets[8], a complex 
event detection method based on a workflow[9], and some of their improved methods[10-12]. 
However, these methods all assume that the RFID event arrivals are totally ordered. They 
assume that the received order of events, for the events received by the detection system, is the 
same as the sent timestamp order. However, in practical application scenarios, network 
latencies, machine failures, node errors and other reasons can cause events that occur first to 
arrive later, which creates a large number of out-of-order phenomena among the event 
occurrences. The many occurrences of out-of-order RFID events can lead to output blocking, 
large system latencies, memory resource overflow and incorrect result generation, which 
influence the processing efficiency of the RFID event stream.  

To address those problems, some complex event processing schemes based on out-of-order 
event streams have been presented recently, such as K-slack algorithms[13], the Conservative 
and Aggressive method[14-15], the punctuation-based method [16], the Speculation-based 
method[17], the Approximation-based method[18], and so on. The existing state-of-the-art 
methods listed above for addressing out-of-order events can be divided into two classes of 
approaches: buffering approaches and stream revision approaches. However, the existing two 
classes of methods have the problems of long processing time, high memory consumption and 
low detection throughput due to having too many event reorderings and recomputation 
operations, which influence the whole processing efficiency.  

In this paper, with the aim of solving the problems mentioned above that exist in some 
current methods, an efficient complex event processing method based on INFA-HTS 
(Improved Nondeterministic Finite Automaton-Hash Table Structure) is presented. The 
achievements of this paper include the following: 

(1) An INFA (Improved Nondeterministic Finite Automaton) model is first proposed in this 
paper to meet the processing requirement of disorder even in an out-of-order RFID event 
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stream on the basis of studying existing NFA models, which can solve the problems of long 
processing latency and high memory consumption by reducing many capturing operations 
when there are correlated out-of-order primitive events from an out-of-order RFID event 
stream.  

(2) An HTS (Hash Table Structure) is proposed to store and process the large intermediate 
captured results in this paper; this approach can solve the problems of long processing latency 
and high memory consumption in out-of-order RFID event streams by applying the hash table 
mapping, hash table storing, hash table searching and hash table comparison technologies to 
significantly reduce the searching, inserting, sorting, and comparing operations compared with 
some of the general methods. 

 (3) A series of experiments are performed to verify the effectiveness of our proposed 
method in this paper. The experimental results show that our proposed scheme provides a 
significant improvement in terms of reducing the average execution time, lowering the 
average memory consumption and average result latency, and improving the average event 
throughput compared with some of the current processing methods. 

The remainder of this paper is organized as follows. In section 2, the related knowledge on 
out-of-order RFID event streams is introduced. Our proposed scheme is presented in section 3. 
The experimental results and analysis using our proposed method are shown in section 4. In 
section 5, we provide some conclusions. 

2. Related Knowledge 

2.1 Related definitions 
In this section, some definitions that are related to RFID primitive events, RFID complex 

events and out-of-order RFID events are given as follows: 
RFID primitive event: A simple event that is generated by an RFID reader. This event 

consists of the identifier of a tag, the identifier of a reader and a timestamp when reader 
recognizes the tag. It can be expressed as e =<r, o, t>, where r represents the location at which 
the RFID primitive event is generated; o represents the unique identification of the RFID 
primitive event; and t represents the time at which the RFID primitive event occurs. 

RFID complex event: A composite logical event that consists of primitive events based on 
some rules and some event algebraic operations for application services. There are many event 
algebraic operators such as AND, OR, NOT, SEQUENCE, INTERVAL, and so on. 

Out-of-order RFID primitive event: A simple event that occurs as an out-of-order 
phenomenon. This event can be defined as follows: given any newly arrived RFID primitive 
event en, suppose that the events that the RFID device received before en are e1, e2, e3,...,en−1; if 
there is any ei that satisfies the relationship en.timestamp <ei.timestamp (1≤i≤n−1), then en is 
an out-of-order RFID primitive event.  

Fig. 1 is an example of an out-of-order RFID primitive event in an RFID event stream. As 
seen from Figure 1, the event instance b should appear between event a and event d, and event 
c should appear between event d and event e; as a result, they do not appear in the correct 
position, perhaps because of network latencies, machine failures, or node errors. Thus, event b 
and event c are two out-of-order RFID primitive events in Fig. 1. 
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Fig. 1. Out-of-order RFID primitive events over an event stream 

2.2 Processing difficulties for an out-of-order RFID event stream 
As is known, there is an enormous difference in obtaining a complex event from an 

out-of-order RFID event stream compared with an ordered stream. The following are some of 
the processing difficulties when processing out-of-order an RFID event stream: 

(1) It is difficult to establish corresponding NFA models to capture the related RFID 
primitive event from out-of-order RFID primitive events. As is known, it is easy to establish a 
corresponding NFA model according to pattern expression for capturing the related RFID 
primitive event due to the total time in an ordered RFID event stream, while it is difficult to 
build a unified NFA model for capturing related primitive events from an out-of-order RFID 
event stream due to the uncertainty in the arrival of the RFID events and the sequential order of 
the NFA model under the same detection condition. Take establishing the corresponding 
INFA models from out-of-order event pattern expression SEQ (A, B, C), for example, to 
illustrate the established difficulties for an out-of-order RFID stream. There are two 
established difficulties: First, in an out-of-order RFID stream, it is possible to have an RFID 
primitive event appear in any combination of event instances a, b, and c due to its uncertainty 
of arrival. Second, different combination forms of event instances a, b, and c require different 
detection models because of the sequential order of the NFA model. Thus, it is very difficult to 
establish a unified detection model for an out-of-order RFID event stream.  

(2) It is difficult to determine the final state of a complex event. It is easy to determine the 
final state of a complex event in an ordered RFID event stream, which can be accomplished by 
judging the termination event due to its total time order. However, in an out-of-order RFID 
event stream, some primitive events composed into a complex event might not have fully 
arrived when the termination event arrives, due to the network latencies and other reasons. 
Under such conditions, it is very difficult to determine the final state of a complex event by 
only judging the termination event. We also consider the constituted timestamp of the 
out-of-order RFID event. The complexity of a double judgement adds to the processing 
difficulty for an out-of-order RFID event stream. 

(3) It is difficult to judge the nonoccurrence or nonarrival for RFID primitive events 
composed into the complex event. It is easy to judge whether a correlated RFID primitive 
event is a nonoccurrence or nonarrival in an ordered RFID event stream due to the total time 
order. However, in an out-of-order RFID event stream, it is very difficult to judge whether a 
correlated out-of-order RFID primitive event does not occur or arrive due to the disorder of the 
RFID event stream, which also adds to the detection difficulty of a complex event over an 
out-of-order RFID event stream. 

2.3. Related studies on out-of-order event streams 
Currently, many complex event processing technologies have been proposed to detect a 

complex event from an out-of-order event stream. Babu et al.[13] and Mutschler et al[19] 
proposed a method, which is called K-slack, to address the out-of-order arrival of events. Li et 
al.[20] first proposed a correctness method based on the latency, output order and result 
correctness to address the out-of-order event stream. Then, they proposed two aggressive 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016                                4311 

methods and a conservative method to process out-of-order event streams for sequence pattern 
queries[14-15]. Tucker et al. [16] and Ding et al. [21] propose to use punctuation technology to 
handle out-of-order event streams. Mutschler et al. proposed to use reliable speculation and 
adaptive speculation technologies to address out-of-order event streams[17, 22]. Tirthapura et 
al. [18]and Cormode et al. [23] proposed to use an approximation-based method to address 
out-of-order event streams. 

Barga et al. used a spectrum based on consistency levels and performance tradeoffs to 
address out-of-order deliveries[24]. In [25], an event processing method based on heartbeats is 
presented to address uncoordinated event streams. In [26], an accumulative FPGA 
accelerating towards a sliding window is presented for an out-of-order event stream. In [27], 
an event querying and matching mechanism with low memory access and a fast response time 
was presented. At the end of the paper, they also certified its effectiveness by using an 
experimental method. Paul et al. [28] proposed a complex event processing frame that is based 
on a speculative rule. Kim et al. proposed a data control method that is based on window 
processing technology and a data control method that is based on the time interval between 
tuples and their relationships for out-of-order event stream processing [29-30]. Paper [31] 
proposed a dataflow model for massive-scale out-of-order event streams. This dataflow model 
can balance the correctness, latency and cost for massive-scale out-of-order event streams. 
Papers [32-33] present a quality-driven continuous query execution scheme and a 
quality-driven processing of sliding window aggregates approach for out-of-order event 
stream processing, respectively. In their paper[34], Xiao et al. proposed to use a latency 
distance and purging time to perform real-time processing of out-of-order event streams. 

All of the existing state-of-the-art methods above for addressing out-of-order events can be 
divided into two classes of approaches: the buffering approach and the stream revision 
approach. However, the buffering approach requires a long latency for the event ordering, 
while the stream revision approach requires large system overloads for the event ordering, 
which cause a high memory consumption for an out-of-order event stream. In contrast to the 
processing methods above, in this paper, efficient complex event processing based on 
INFA-HTS (Improved Nondeterministic Finite Automaton-Hash Table Structure) is presented 
for out-of-order RFID event streams based on the analysis and study of the current processing 
algorithms described above.  

3. Proposed scheme 
In this section, we proposed an efficient complex event processing method that is based on 

INFA-HTS (Improved Nondeterministic Finite Automaton-Hash Table Structure) for 
out-of-order RFID event streams.  

3.1. Motivation resource 
In our scheme, to solve the detection difficulties exhibited by current detection models 

based on automatons that cannot adequately detect out-of-order RFID event streams because 
of the uncertain arrival of RFID primitive events and the sequential order restriction of the 
NFA model, we proposed an INFA model on the basis of analysis and study the traditional 
NFA model. To improve the storing and processing efficiency for the large intermediate 
matching results that exist in detection processing, we proposed to use an HTS (Hash Table 
Structure) to store and process the large intermediate result. To provide a fast output detection 
result, we use hash table search technology to output the desired detection results instead of 
depth-first search technology. 

http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bHyeon-Gyu+Kim%7d&section1=AU&database=3&yearselect=yearrange&sort=yr
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3.2. Working principle of the INFA-HTS algorithm 
The basic working principle of our proposed INFA-HTS algorithm is that we first use 

INFA (Improved Nondeterministic Finite Automaton) to capture the related primitive events 
from an out-of-order RFID event stream, and then, we utilize HTS (Hash Table Structure) to 
store and process the large intermediate detection result; last, we use the hash table searching 
technology to output the complex event sequences. As a result, the problems of having a long 
detection time, high memory consumption and low event throughput, which exist in the 
current processing methods for processing out-of-order RFID event streams, can be 
effectively solved by our scheme.  

3.3. Composition structure of the INFA-HTS algorithm 
Fig. 2 is the composition structure of our method. Fig. 2 shows that our proposed 

INFA-HTS method contains four important composition parts: Read RFID primitive event, 
INFA match, HTS store and process, and output result, which compose our proposed 
INFA-HTS method. The Read RFID primitive event mainly executes the reading operation for 
the RFID primitive events from an out-of-order RFID event stream. INFA match mainly 
executes the capturing operation for the related RFID primitive event from the reading RFID 
primitive event above. HTS store and process mainly executes the function of storage and 
sorting. Output result mainly realizes the output function of the complex event sequences by 
using hash table search technology instead of depth-first search technology. 

 
Read RFID 

primitive event
   INFA match HTS store and 

process Output result
 

Fig. 2. Composition structure of the INFA-HTS algorithm 
 

In our suggested method, HTS store and process includes the following functions: RFID 
event mapping, RFID event search, RFID event insertion, RFID event storage and RFID event 
delete. Where RFID event mapping mainly maps related RFID primitive events into a hash 
table structure by using a predefined hash mapping function, RFID event search mainly 
determines the right insertion location by the comparing timestamp among the RFID primitive 
event. RFID event insertion mainly executes the inserting operation for related RFID primitive 
events. RFID event storage mainly uses a hash table structure to store the large intermediate 
detection result; HTS delete mainly deletes outdated RFID primitive events. 

3.4. Detection process of the INFA-HTS algorithm 
Fig. 3 is the detailed detection process of our INFA-HTS algorithm. In Fig. 3, the capital 

letters (e.g., E) represent event types. The lower-case letters (e.g., a, b, c) stand for event 
instances. For example, bf  represents an event instance of event type Eb with attributes f; bf, af, 
cf represent RFID primitive event instances of event type Eb Ea Ec with the same associated 
attributes. The out-of-order RFID event mainly offers the RFID event resource. It consists of a 
series of various event instances. The timestamp refers to the received timestamp of an RFID 
primitive event. 

The INFA model is an improved nondeterministic finite automaton model and is mainly 
used to capture the related out-of-order RFID events. It is constructed by using extending 
technology on the basis of an NFA model. Its construction process mainly includes the 
following parts: initialization, construct NFA model, traverse NFA model, merge NFA model 
and produce INFA model. Initialization mainly makes some necessary preparations before the 
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program starts to run. Construct NFA model primarily establishes all of the possible NFA 
models through given event pattern expressions and realizes the construction function of the 
NFA model for out-of-order RFID events. Traverse NFA mainly traverses each constructed 
NFA model above by going depth-first from its starting state. Merge NFA mainly executes the 
merging function by adding the runtime state of the NFA model into the INFA model for all of 
the NFA models. The ①,②,③ ……stand for automata states.  

 
Fig. 3. Detection process of the INFA-HTS algorithm 

 
In our proposed scheme, the hash table mapping function mainly realizes the mapping 

function for mapping the same associated attributes of the RFID primitive event into the hash 
table address through some predefined rules. Because the related RFID primitive events in an 
event pattern expression have the same associated attributes, for example, af, bf, and cf, we can 
map af, bf, and cf event instances into the same hash table address through some predefined 
rules. 

C represents the counter, which is used to calculate the number of related RFID primitive 
events in the main node. In our proposed scheme, we must execute the output operation only 
when the counter value of the main node in the main chain is equal to the length value of the 
INFA. The tmin represents the minimum time of the RFID primitive event in the child chain. In 
our proposed scheme, we can output complex events by hash table search technology when the 
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timestamp of the current RFID primitive event - the minimum timestamp tmin of the main node 
in the main chain < Time Window. 

The main node designed consists of event type E, counter C, minimum timestamp tmin and 
pointers. The child node includes the event instance, timestamp of the event instance and 
pointers. 

In our scheme, after using INFA (Improved Nondeterministic Finite Automaton) to 
capture the related primitive events from an out-of-order RFID event stream, we utilize HTS 
(Hash Table Structure) to store and process the large intermediate detection result, and last, we 
use hash table searching technology to output the complex event sequences. RFID event 
mapping, RFID event search, RFID event insertion, RFID event storage, RFID event delete 
and RFID event output technologies are used to reduce the many searching, inserting, sorting, 
comparing operations, which improves the processing performance. We realize the 
out-of-order RFID event sorting operations by comparing the timestamp of the RFID event on 
the basis of taking good advantage of the hash table search and hash table insertion technology 
in this paper. The detailed detection process is shown in Fig. 3. 

3.5. Realizing the steps of the INFA-HTS algorithm 
Realizing the steps for our proposed INFA-HTS algorithm can be summed up in the 

following steps: 
Step 1, build the corresponding INFA according to complex event expression and calculate 

its length, and in addition, create and initialize a new hash table. 
Step 2, read the RFID primitive event from the out-of-order RFID event stream. 
Step 3, judge whether the RFID primitive event is accepted by INFA. If yes, jump to step 4 

to operate; otherwise, skip to step 2 to operate.  
Sep 4, map the event type of the RFID primitive event into the corresponding hash array by 

using a predefined hash mapping function and judge whether it already exists in the 
hash array by searching for the event type. If not, then first add a main node in a main 
chain of this hash array. The main node includes the event type, primitive event 
counter and minimum timestamp, where the event type refers to the event type of this 
RFID primitive event. The primitive event counter mainly counts the number of 
primitive events in the child node, and the minimum timestamp mainly records the 
minimum time of the RFID primitive event in the child chain. Second, add a child 
node in a child chain according to the timestamp order, which includes only the event 
type and the timestamp of the RFID primitive event. If yes, then only add a child node 
in the right location of the child chain with the event type and the timestamp of the 
primitive event by comparing the timestamp of this RFID primitive event with other 
primitive events in succession. 

Step 5, judge whether the counter value of the main node in the main chain is equal to the 
length value of the INFA. If yes, then jump to step 7 to operate; otherwise, skip to step 
2 to execute next.  

Step 6, judge the timestamp of the RFID primitive event - the minimum timestamp of the 
main event node in the main chain < Time Window. If yes, then output the complex 
event by hash table search technology. Otherwise, skip to step 3 to execute next.  

Algorithm 1 is the partial pseudo code of the INFA-HTS algorithm. It mainly includes 
Read RFID primitive event, INFA match, HTS store and process, and Output result, which are 
four functions, and is realized by using Build_INFA(), read(), hash_array(), compare(), 
search_hash_table(), and so on. It is the use of the function above that allows us to achieve our 
suggested algorithm in this paper. 
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Partial pseudo code of the INFA-HTS algorithm 

Algorithm1:complex event processing algorithm based on INFA_HTS 
 Input: out_of_order RFID  stream S, matching expression Q , 
hash function H  
 Output: event sequence M   

    (1) initialization
    (2) Build_INFA        Q ;
    (3) Calculate_INFA_length();
    (4) Create_initialize_hashtable();
    (5) read  ei       S           
    (6) if( ei is accepted by INFA) then
    (7)      hash array    H(ei)
    (8)      search E(ei) 
    (9)      if(E(ei) is not in hast array) then
    (10)          Mainnode      { Eei,C,Tmix}
    (11)          childNode     { Eei,tei}; 
    (12)          Tmix        tei; 
    (13)          Counter+1;
    (14)     end if
    (15)   else then
    (16)         Compare(ei,ei-1)
    (17)         add childNode      { Eei,tei}; 
    (18)          if (tei<Tmix) then
    (19)               Tmix        tei; 
    (20)                end if
    (21)          Counter +1;                                
    (22)    if( value of C == value of ENFA) then
    (23)         if(tei - Tmin<Time Window) then 
    (24)              M         Search_hash_table() ;
    (25)              return M;
    (26)         else  then 
    (27)               go to (5)
    (28)    else  then 
    (29)         go to (5)
    (29)  else 
    (30)     go to (5)  

 

3.6. Instance study of the INFA-HTS algorithm 
Taking the detection of the complex event expression SEQ (A, B, C) from an out-of-order 

RFID event stream, for example, to illustrate the detailed realization process for our proposed 
method. 

In step 1, build the corresponding INFA according to the complex event expression SEQ 
(A, B, C), which is shown in Fig. 3, and calculate its length value for 3, and in 
addition, create and initialize a new hash table. 

Detect RFID primitive event bf: 
In step 2, read the RFID primitive event bf from the out-of-order RFID event stream. 
In step 3, because the RFID primitive event bf can be accepted by INFA, the detection 

program jumps to step 4 to execute next.  
In step 4, map the event type Ef of the RFID primitive event bf into the corresponding hash 

array by using a predefined hash mapping function. Because there is no event type 
Ef in this hash array by searching the event type Ef, the detection program first adds 
an event node in the main chain of the corresponding hash array, which includes the 
event type Ef of the primitive event bf, the primitive event counter C and the 
minimum time stamp tmin. Then, add a child node in a child chain with an event type 
baf of the primitive event bf and a timestamp tb of the primitive event bf. Last, the 
detection program increases by 1 for the value of the primitive counter C and 
updates the minimum timestamp tmin with tb. 

In step 5, because the value of counter C in the main node (1) is not equal to the length of 
the value of INFA (3), the detection program skips to step 2 to execute next. 
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 Detect RFID primitive event af: 

In step 2, read the primitive event af from the out-of-order RFID event stream. 
In step 3, because the primitive event af can be accepted by INFA, the detection program 

jumps to step 4.  
In step 4, map event type Ef of primitive event af into the corresponding hash array by using 

a predefined hash mapping function. Because there is already an event type Ef in 
the main chain of the corresponding hash array, searching the event type Ef, 
detection program, first adds a child node with event type abf of primitive event af 
and time stamp ta in the precursor of the bf event by judging ta< tb and, second, 
adds the value of counter C for 2. 

In step 5, because the value of counter C in main node (2) is not equal to the length value of 
INFA(3), the detection program still skips step 2, Additionally, it updates the 
minimum timestamp tmix with ta. 

Detect RFID primitive event cf; 
In step 2, read the primitive event cf from the out-of-order RFID event stream. 
In step 3, because the primitive event cf can be accepted by INFA, the detection program 

jumps to step 4.  
In step 4, map the event type Ef of the RFID primitive event cf into the corresponding hash 

array by using the predefined hash mapping function. Because there is already an 
event type Ef in the main chain of the corresponding hash array by searching the 
event type Ef, the detection program first only adds a child node with event type ccf 
of RFID primitive event cf and timestamp tc of RFID primitive event cf  
subsequent to event bf by comparing ta<tb< tc. Second, the detection program adds 
the value of counter C to 3. 

In step 5, because the value of counter C in the main node (3) is equal to the length value of 
INFA(3), the detection program jumps to step 6 to execute next. 

In step 6, because the timestamp tc of RFID, the primitive event cf - the minimum 
timestamp in main node< Time Window, and detection program outputs a 
complex event af bf cf  by using hash table search technology. 

The other RFID primitive events over the out-of-order RFID event stream, such as af, cq, bq, 
and so on, can be detected by a detection method similar to the above. 

4. Experimental Results and Analysis 
  In this section, to verify the effectiveness of our proposed method above, we perform some 

experiments. Our designed experiments mainly include four parts: build experimental 
environment, test average execution time, average memory consumption, average application 
latency, average accuracy rate and average event throughput in different out-of-order event 
stream percentages.  

4.1. Build experimental environment  
Our simulation environment was conducted on two Windows PCs with Microsoft Windows 7 
operating systems, AMD A6-3420M 4 core CPU Processors, 2 G of memory and a 500 G hard 
disk. One PC is used to generate the event streams and send out the event streams to the other 
PC, which is used as an event query engine. In our experiment, we use the Visual C++ 6.0 tool 
to develop an event generator. This event generator can be configured with parameters as 
listed in Table 1. The input event stream includes events of 10 different event types. Each 
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event source can send out event instances with the same type. The event distributes among 
event types A to J. 
 

Table 1. Main experimental parameters in our experiment 
Parameter name parameter value 

Bit number of hash table 1~10 
Sliding window size 40 

Number of event types 10 
Sequence queries expression SEQ(A, B, !C, D, E, F, G) 
Length of sequence queries 7 

Out-of-order event percentage of event type 0~50(%) 
Maximum arrival delay of event type 10 time unit 

Size of event stream 105 
Number of attributes of each event 2 

POGs  percentage. 20% 
 

In our experiment, we select SEQ(A, B, !C, D, E, F, G) as the testing sequence queries for 
all of the experiments, and the length of the testing sequence queries is set to 7. To keep the 
memory consumption and the overhead of POGs relative small, se set the percentage of POGs to 20%. The 
comparison indicators in our experiment are selected for processing time, accuracy rate, 
average application latency, memory consumption and event throughput. The processing time 
refers to the total executed time for addressing the whole out-of-order event stream. The 
accuracy rate denotes the accuracy for outputting the desired results from the out-of-order 
event streams. The average application latency refers to the average time difference between 
the sequence output time and the maximum arrival time of the event instances, which compose 
the sequence result. The memory consumption refers to the total used memory for addressing 
the out-of-order event streams. The event throughput refers to the output desired result from 
the out-of-order event streams. 

The Conservative method, Aggressive method and K-slack method are selected as our 
comparison methods in our experiment, whereas the aggressive method is mainly used to 
produce a maximal output when the out-of-order event arrival is rare. To tackle any premature 
erroneous result generation when an out-of-order event arrives, appropriate error 
compensation methods are designed for this method. The conservative method is mainly used 
to produce a guaranteed output when out-of-order events are common. To guarantee the 
correctness result, a POGs model is proposed to guarantee the result correctness. K-slack 
algorithms are mainly used to buffer the arriving data for K time units because it generally 
assumes that the event might arrive out-of-order at most by some constant K time units. The 
out-of-order event percentage in each event stream is defined as follows: Out-of-order event 
percentage=the total number of out-of-order events/the total number of instances received by 
our processing system. 

The accuracy rate can is defined as follows: Accuracy rate=(the number of pattern-matching 
results on the ordered event stream∩ the number of pattern-matching results over the 
out-of-order event stream)/ the number of pattern-matching results over the ordered event 
stream. The average application latency can be defined as follows: Average application 
latency=∑(the time of sequence output from our system − the maximum event arrival 
time )/Number of event types. The detailed experimental results are shown next.  
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4.2 Test average execution time 
In this subsection, we evaluate the average execution time of our proposed scheme with the 

other three general methods in different out-of-order event stream percentages. Fig. 4 shows 
the experimental results.  

From Fig. 4, we can see clearly that our proposed algorithm shows the least execution time 
of the four methods. The Aggressive algorithm follows. The K-slack method costs the largest 
average execution time. The reasons for these findings are that, in our scheme, we first use 
INFA to reduce the capturing operations for the related out-of-order events, which can save 
much constructing and capturing time. Second, we use a hash table structure to store and 
address the large intermediate capturing results by using hash mapping, searching and 
inserting technologies, which can save a large number of execution operations for disordered 
events, therefore saving a large amount of average execution time. The K-slack strategy 
consumes the largest average execution time due to its many waiting operations for the 
maximum delay before processing. The aggressive algorithm spends less average execution 
time at the lower out-of-order event percentage compared with the conservative method, but 
when there is an increase in the out-of-order events percentage and when it reaches a certain 
threshold (e.g., 40% in this experiment), it starts to require more average execution time than 
the conservative strategy because of its extra recomputation operations for compensation 
tuples. The conservative method shows the opposite performance compared with the 
aggressive method.  
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Fig. 4. Execution time in different out-of-order event data percentages 

 

4.3. Testing the average memory consumption 
In this subsection, we test the average memory consumption for our suggested scheme. The 

testing results are shown in Fig. 5. 
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Fig. 5. Memory consumption in different out-of-order event data percentages 

 
From Fig. 5, we can observe that our proposed method presents a good average memory 

consumption savings rate compared to the other three methods. The Conservative strategy 
follows. The aggressive solution and K-slack solution show the highest average memory 
consumption among the four approaches. The reasons for these findings are the following: In 
our scheme, on the one hand, an INFA model is established to reduce the capturing operation 
for the related out-of-order events, which can save much capturing memory for out-of-order 
events. On the other hand, the hash table structure is used to process the large intermediate 
capturing results, which can reduce the many inserting, storing and comparing operations of 
the related primitive events by applying hash mapping technology, thus also saving a large 
amount of processing memory. The Conservative method presents a low average memory 
consumption because the POGs in the conservative method can help the system to purge the 
related event instances over time, which can result in larger savings in memory. Because the 
aggressive solution must generate more recomputations for compensation tuples with more 
arrivals of out-of-order events, more memory is consumed. The K-slack strategy has a high 
average memory consumption because of its waiting operations for the maximum delay before 
processing. 

 

4.4. Testing the average application latency 
In this subsection, we mainly evaluate the performance of the average application latency 

for our proposed scheme. Fig. 6 shows the testing results of the average application latency in 
different out-of-order event data percentages. 
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Fig. 6. Average application latency in different out-of-order event data percentages 

 
From Fig. 6, we can observe that our proposed method presents the least average 

application latency compared with the other three methods, with the same percentage of 
out-of-order percentage. The aggressive and conservative algorithms follow. The K-slack 
strategy shows the largest average application latency of the four approaches. The reasons for 
these findings are the following: In our scheme, first, an INFA model is established to reduce 
the capturing operation for the related out-of-order events, which can save a large amount of 
capturing latency for out-of-order events; Second, a hash table structure is used to process the 
large intermediate capturing results, which can reduce many of the inserting, storing and 
comparing operations of related primitive events by applying hash mapping technology, thus 
also saving a large amount of processing latency. Because the K-slack strategy must wait for 
the maximum delay before processing, this arrangement leads to a large average application 
latency. The aggressive solution shows a small average application latency compared with the 
conservative strategy when the out-of-order percentage of event is relatively low, but with the 
increase in the out-of-order events percentage, when it reaching a certain threshold (e.g., 40% 
in this experiment), it starts to generate the largest latency compared with the conservative 
strategy. The reason is that the aggressive solution must generate more recomputations for 
compensation tuples with the arrival of out-of-order events, which delays the generation of the 
sequence results. In contrast, the average application latency of the conservative method 
presents a decrease with an increment in the out-of-order percentage of events. This finding 
occurs because the application latency is mainly determined by POGs in the conservative 
method, which can help the system to purge the related event instances over time. 

4.5. Testing the average accuracy rate 
In this subsection, we evaluate the average accuracy rate of our proposed scheme. The 

testing results of the average accuracy rate for the four methods in different out-of-order event 
stream percentages are shown in Fig. 7. 
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Fig. 7. Accuracy rate with different out-of-order event data percentages 

 
Fig. 7 reveals that our algorithm has a similar average accuracy rate as the conservative 

method and K-slack. The aggressive algorithm shows the worst accuracy rate of the four 
methods. The reasons can be explained as follows: In our proposed scheme, a hash table 
structure is used to process the large out-of-order capturing results by taking advantage of the 
searching, inserting, storing and comparing functions of hash table technology after using the 
INFA model to capture the related out-of-order events, which can reduce many wrong 
operations, thus keeping up the high average accuracy rate. The K-slack method can achieve 
an average good accuracy rate due to its setting a high value for K, which can reduce many 
erroneous results, but at the same time, it sacrifices an enormous processing time, memory 
consumption and application latency. The conservative method can realize a high accuracy rate 
because it can take good advantage of POGs to guarantee the correctness of the output by 
reducing many of the of operator states and generated results, thereby having a high accuracy 
rate of the detection results with the increase in the out-of-order events percentage. The 
aggressive algorithm shows a low accuracy rate in the out-of-order events percentage because 
of the use the aggressive strategy in its methods. It needs to use an error compensation 
mechanism to tackle any premature erroneous result generation when each out-of-order event 
appears, thereby influencing its accuracy rate. 

 

4.6. Testing the average event throughput 
In this subsection, we evaluate the average event throughput of our proposed scheme. Fig. 

8 shows the experimental results.  
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Fig. 8. Event throughput in different out-of-order event data percentages 

 
From Fig. 8, we can see clearly that our proposed algorithm shows a good average event 

throughput for the four methods. The aggressive algorithm and conservative method follow. 
The K-slack method presents the worst processing performance. The reasons for these 
findings are that in our scheme, we use INFA and hash table structure to reduce the capturing, 
storing and processing operations for the related out-of-order events, therefore improving its 
whole processing speed. The aggressive algorithm outputs a high average event throughput 
due to the aggressive strategy in its method, while the conservative method has a good event 
throughput due to its conservative strategy. The K-slack strategy shows the worst processing 
performance because of its long waiting operations for the maximum delay before processing. 
Fig. 8 also shows that the processing times in the four methods all present an increase with 
growth in the out-of-order event stream percentages, but our suggested method increases in a 
relatively flat way compared with the other algorithms. 

In addition, from Fig. 4 through 8 above, we can obtain the conclusion that the four 
methods above have their own different applicability scopes. The aggressive solution is more 
suitable for the scene with low out-of-order events. The conservative aggressive is better fit to 
the scene with a high out-of-order event. The K-slack method is better to use in an 
environment that has a constant latency. However, our proposed scheme in this paper can 
apply to all of the scenes and obtains better processing results. 

5. Conclusions 
In this paper, an efficient complex event processing scheme is presented for an 

out-of-order RFID event stream. In our scheme, first, we use INFA to capture the related 
primitive events from the out-of-order RFID event stream. Second, we use HTS to store and 
process the large intermediate detection result. As a result, some of the problems that exist in 
some of the current methods can be effectively solved by our scheme. The simulation 
experiments demonstrate the effectiveness of our proposed approach in terms of the execution 
time, memory consumption, application latency, accuracy rate, and event throughput compared 
with some of the current general processing methods. 
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