• Title/Summary/Keyword: automation algorithm

Search Result 1,027, Processing Time 0.033 seconds

Development of an FPGA-based Sealer Coating Inspection Vision System for Automotive Glass Assembly Automation Equipment (자동차 글라스 조립 자동화설비를 위한 FPGA기반 실러 도포검사 비전시스템 개발)

  • Ju-Young Kim;Jae-Ryul Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.320-327
    • /
    • 2023
  • In this study, an FPGA-based sealer inspection system was developed to inspect the sealer applied to install vehicle glass on a car body. The sealer is a liquid or paste-like material that promotes adhesion such as sealing and waterproofing for mounting and assembling vehicle parts to a car body. The system installed in the existing vehicle design parts line does not detect the sealer in the glass rotation section and takes a long time to process. This study developed a line laser camera sensor and an FPGA vision signal processing module to solve this problem. The line laser camera sensor was developed such that the resolution and speed of the camera for data acquisition could be modified according to the irradiation angle of the laser. Furthermore, it was developed considering the mountability of the entire system to prevent interference with the sealer ejection machine. In addition, a vision signal processing module was developed using the Zynq-7020 FPGA chip to improve the processing speed of the algorithm that converted the profile to the sealer shape image acquired from a 2D camera and calculated the width and height of the sealer using the converted profile. The performance of the developed sealer application inspection system was verified by establishing an experimental environment identical to that of an actual automobile production line. The experimental results confirmed the performance of the sealer application inspection at a level that satisfied the requirements of automotive field standards.

IoT-Based Automatic Water Quality Monitoring System with Optimized Neural Network

  • Anusha Bamini A M;Chitra R;Saurabh Agarwal;Hyunsung Kim;Punitha Stephan;Thompson Stephan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.46-63
    • /
    • 2024
  • One of the biggest dangers in the globe is water contamination. Water is a necessity for human survival. In most cities, the digging of borewells is restricted. In some cities, the borewell is allowed for only drinking water. Hence, the scarcity of drinking water is a vital issue for industries and villas. Most of the water sources in and around the cities are also polluted, and it will cause significant health issues. Real-time quality observation is necessary to guarantee a secure supply of drinking water. We offer a model of a low-cost system of monitoring real-time water quality using IoT to address this issue. The potential for supporting the real world has expanded with the introduction of IoT and other sensors. Multiple sensors make up the suggested system, which is utilized to identify the physical and chemical features of the water. Various sensors can measure the parameters such as temperature, pH, and turbidity. The core controller can process the values measured by sensors. An Arduino model is implemented in the core controller. The sensor data is forwarded to the cloud database using a WI-FI setup. The observed data will be transferred and stored in a cloud-based database for further processing. It wasn't easy to analyze the water quality every time. Hence, an Optimized Neural Network-based automation system identifies water quality from remote locations. The performance of the feed-forward neural network classifier is further enhanced with a hybrid GA- PSO algorithm. The optimized neural network outperforms water quality prediction applications and yields 91% accuracy. The accuracy of the developed model is increased by 20% because of optimizing network parameters compared to the traditional feed-forward neural network. Significant improvement in precision and recall is also evidenced in the proposed work.

Implementation of Pattern Recognition Algorithm Using Line Scan Camera for Recognition of Path and Location of AGV (무인운반차(AGV)의 주행경로 및 위치인식을 위한 라인스캔카메라를 이용한 패턴인식 알고리즘 구현)

  • Kim, Soo Hyun;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • AGVS (Automated Guided Vehicle System) is a core technology of logistics automation which automatically moves specific objects or goods within a certain work space. Conventional AGVS generally requires the in-door localization system and each AGV equips expensive sensors such as laser, magnetic, inertial sensors for the route recognition and automatic navigation. thus the high installation cost is inevitable and there are many restrictions on route(path) modification or expansion. To address this issue, in this paper, we propose a cost-effective and scalable AGV based on a light-weight pattern recognition technique. The proposed pattern recognition technology not only enables autonomous driving by recognizing the route(path), but also provides a technique for figuring out the loc ation of AGV itself by recognizing the simple patterns(bar-code like) installed on the route. This significantly reduces the cost of implementing AGVS as well as benefiting from route modification and expansion. In order to verify the effectiveness of the proposed technique, we first implement a pattern recognition algorithm on a light-weight MCU(Micro Control Unit), and then verify the results by implementing an MCU_controlled AGV prototype.

Development of an Image Processing Algorithm for Paprika Recognition and Coordinate Information Acquisition using Stereo Vision (스테레오 영상을 이용한 파프리카 인식 및 좌표 정보 획득 영상처리 알고리즘 개발)

  • Hwa, Ji-Ho;Song, Eui-Han;Lee, Min-Young;Lee, Bong-Ki;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.210-216
    • /
    • 2015
  • Purpose of this study was a development of an image processing algorithm to recognize paprika and acquire it's 3D coordinates from stereo images to precisely control an end-effector of a paprika auto harvester. First, H and S threshold was set using HSI histogram analyze for extracting ROI(region of interest) from raw paprika cultivation images. Next, fundamental matrix of a stereo camera system was calculated to process matching between extracted ROI of corresponding images. Epipolar lines were acquired using F matrix, and $11{\times}11$ mask was used to compare pixels on the line. Distance between extracted corresponding points were calibrated using 3D coordinates of a calibration board. Non linear regression analyze was used to prove relation between each pixel disparity of corresponding points and depth(Z). Finally, the program could calculate horizontal(X), vertical(Y) directional coordinates using stereo camera's geometry. Horizontal directional coordinate's average error was 5.3mm, vertical was 18.8mm, depth was 5.4mm. Most of the error was occurred at 400~450mm of depth and distorted regions of image.

Optimum Design of Cross Section Lateral Damper Oil Seals for High Speed Railway Vehicle (고속 철도 차량 횡댐퍼 오일 씰의 형상 단면 최적설계)

  • Hwang, Ji-Hwan;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.579-584
    • /
    • 2017
  • The damper oil seal of a high-speed railway vehicle is made from nitrile butadiene rubber (NBR) in order to prevent lubricant from leaking into the damper and to stop harmful contaminants from entering the external environment while in service. Oil leakage through the seal primarily occurs from fatigue failure of the damper. Cumulative damage of the seal occurs due to the contact force between the rod and the rubber during movement due to track irregularities and cants, among other factors. Thus, the design of the oil seal should minimize the maximum principal strain at weak points. In this study, the optimal cross section of the damper oil seal was found using the multi-island genetic algorithm method to improve the durability of the damper. The optimal shape of the oil seal was derived using process automation and design optimization software. Nonlinear material properties for finite element analysis (FEA) of the rubber were determined by Marlow's model. The nonlinear FEA confirmed that the maximum principal strain at the oil leakage point was decreased 24% between the initial design and the optimum design.

Development of Alignment Information Extraction System on Highway by Terrestrial Laser Scanning Technique (지상 레이저 스캐닝 기법에 의한 도로선형정보 추출 시스템 개발)

  • Kim, Jin-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.97-110
    • /
    • 2007
  • A laser scanning technique has been attracting much attention as a new technology to acquire location information. This technique might be applicable to a wide range of areas, most notably in geomatics, due to its high accuracy of location and automation of high-density data acquisition. A alignment information extraction system on highway has been developed in this study by utilizing the advantages of the laser scanning technique. The system can accurately interpret the alignment information of highway and can be applied to actual works. To develop the alignment information extraction system on highway, an algorithm that can automatically separate a horizontal alignment into a straight line, a transition curve, and a circular curve was developed. It can increase its efficiency compared to the conventional methods. In addition, an algorithm that can automatically extract design elements of horizontal and vertical alignments of highway was developed and applied to an object highway. This yielded higher practicality with more accurate values compared to those from previous studies on the extraction of design elements of highway alignment. Furthermore, the extracted design elements were used to perform a virtual driving simulation on the object highway. Through this, data were provided for a visual judgment for judging visually whether the topography and structures were harmonized in a three-dimensional manner or not. The study also presents data that can serve as a basis to determine highway surface freezing sections and to analyze three-dimensional sight distance models. Through the establishment of a systematic database for diverse data on highway and the development of web-based operating programs, an efficient highway maintenance can be ensured and also they can provide important information to be used when estimating a highway safety in the future.

  • PDF

Implementation of A Multiple-agent System for Conference Calling (회의 소집을 위한 다중 에이전트 시스템의 구현)

  • 유재홍;노승진;성미영
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.205-227
    • /
    • 2002
  • Our study is focused on a multiple-agent system to provide efficient collaborative work by automating the conference calling process with the help of intelligent agents. Automating the meeting scheduling requires a careful consideration of the individual official schedule as well as the privacy and personal preferences. Therefore, the automation of conference calling needs the distributed processing task where a separate calendar management process is associated for increasing the reliability and inherent parallelism. This paper describes in detail the design and implementation issues of a multiple-agent system for conference calling that allows the convener and participants to minimize their efforts in creating a meeting. Our system is based on the client-sewer model. In the sewer side, a scheduling agent, a negotiating agent, a personal information managing agent, a group information managing agent, a session managing agent, and a coordinating agent are operating. In the client side, an interface agent, a media agent, and a collaborating agent are operating. Agents use a standardized knowledge manipulation language to communicate amongst themselves. Communicating through a standardized knowledge manipulation language allows the system to overcome heterogeneity which is one of the most important problems in communication among agents for distributed collaborative computing. The agents of our system propose the dates on which as many participants as possible are available to attend the conference using the forward chaining algorithm and the back propagation network algorithm.

  • PDF

Development of robot calibration method based on 3D laser scanning system for Off-Line Programming (오프라인 프로그래밍을 위한 3차원 레이저 스캐닝 시스템 기반의 로봇 캘리브레이션 방법 개발)

  • Kim, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.16-22
    • /
    • 2019
  • Off-line programming and robot calibration through simulation are essential when setting up a robot in a robot automation production line. In this study, we developed a new robot calibration method to match the CAD data of the production line with the measurement data on the site using 3D scanner. The proposed method calibrates the robot using 3D point cloud data through Iterative Closest Point algorithm. Registration is performed in three steps. First, vertices connected by three planes are extracted from CAD data as feature points for registration. Three planes are reconstructed from the scan point data located around the extracted feature points to generate corresponding feature points. Finally, the transformation matrix is calculated by minimizing the distance between the feature points extracted through the ICP algorithm. As a result of applying the software to the automobile welding robot installation, the proposed method can calibrate the required accuracy to within 1.5mm and effectively shorten the set-up time, which took 5 hours per robot unit, to within 40 minutes. By using the developed system, it is possible to shorten the OLP working time of the car body assembly line, shorten the precision teaching time of the robot, improve the quality of the produced product and minimize the defect rate.

Establishment of Integrated Design Bases Management System of APR1400 Using BIM based Algorithm (BIM기반 Algorithm을 활용한 APR1400 설계기준 통합관리 체계 구축)

  • Shin, Jaeseop;Choi, Jaepil
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.5
    • /
    • pp.52-60
    • /
    • 2019
  • The APR1400 is a 1400MWe nuclear power plant developed through national technology development project over a period about 10years. Approximately 65,000 design drawings are produced for APR1400 construction. In order to maintain consistency among numerous drawings, the highest level of design bases drawings (DBDs) are created according to design bases and this is used in the subsequent design. However, DBDs are produced and managed on a document basis and they are managed various field, it was difficult to accurately reflect the design bases information in the subsequent design. Therefore, this study recognizes limitations of the document based DBDs and develops a system that can accurately reflect the design bases information to subsequent design by adopting BIM based design bases integrated information system. Especially, by introducing DBIL(Design Bases Information Layer) concept, DBIL was created and analyzed based on five design bases(Physical protection, Fire protection, Internal missile protection, Internal flood protection, Radiation protection) applied to APR1400. In the final result DBIL set and Datasheet are integrated of room, design bases information, building data(wall, slab, door, window, penetrations). So it can be used for subsequent design automation and design verification. Furthermore, it is expected that APR1400 DBILs data can be used extensively in constructability and design economics analysis through comparison with next generation nuclear power plant.

A Resource Management Scheme Based on Live Migrations for Mobility Support in Edge-Based Fog Computing Environments (에지 기반 포그 컴퓨팅 환경에서 이동성 지원을 위한 라이브 마이그레이션 기반 자원 관리 기법)

  • Lim, JongBeom
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.4
    • /
    • pp.163-168
    • /
    • 2022
  • As cloud computing and the Internet of things are getting popular, the number of devices in the Internet of things computing environments is increasing. In addition, there exist various Internet-based applications, such as home automation and healthcare. In turn, existing studies explored the quality of service, such as downtime and reliability of tasks for Internet of things applications. To enhance the quality of service of Internet of things applications, cloud-fog computing (combining cloud computing and edge computing) can be used for offloading burdens from the central cloud server to edge servers. However, when devices inherit the mobility property, continuity and the quality of service of Internet of things applications can be reduced. In this paper, we propose a resource management scheme based on live migrations for mobility support in edge-based fog computing environments. The proposed resource management algorithm is based on the mobility direction and pace to predict the expected position, and migrates tasks to the target edge server. The performance results show that our proposed resource management algorithm improves the reliability of tasks and reduces downtime of services.