This paper proposes a rapid detection algorithm of a salient region for music video browsing system, which can be applied to mobile device and digital video recorder (DVR). The input music video is decomposed into the music and video tracks. For the music track, the music highlight including musical chorus is detected based on structure analysis using energy-based peak position detection. Using the emotional models generated by SVM-AdaBoost learning algorithm, the music signal of the music videos is classified into one of the predefined emotional classes of the music automatically. For the video track, the face scene including the singer or actor/actress is detected based on a boosted cascade of simple features. Finally, the salient region is generated based on the alignment of boundaries of the music highlight and the visual face scene. First, the users select their favorite music videos from various music videos in the mobile devices or DVR with the information of a music video's emotion and thereafter they can browse the salient region with a length of 30-seconds using the proposed algorithm quickly. A mean opinion score (MOS) test with a database of 200 music videos is conducted to compare the detected salient region with the predefined manual part. The MOS test results show that the detected salient region using the proposed method performed much better than the predefined manual part without audiovisual processing.
Sheena Kim;Jeongin Choi;Eun Sol Kim;Gi Beom Keum;Hyunok Doo;Jinok Kwak;Sumin Ryu;Yejin Choi;Sriniwas Pandey;Na Rae Lee;Juyoun Kang;Yujung Lee;Dongjun Kim;Kuk-Hwan Seol;Sun Moon Kang;In-Seon Bae;Soo-Hyun Cho;Hyo Jung Kwon;Samooel Jung;Youngwon Lee;Hyeun Bum Kim
Korean Journal of Agricultural Science
/
v.50
no.4
/
pp.809-815
/
2023
This study was conducted to find out the correlation between meat quality and muscle fat ratio in pork part meat (pork belly and shoulder butt) using CT (computed tomography) imaging technique. After 24 hours from slaughter, pork loin and belly were individually prepared from the left semiconductors of 26 pigs for CT measurement. The image obtained from CT scans was checked through the picture archiving and communications system (PACS). The volume of muscle and fat in the pork belly and shoulder butt of cross-sectional images taken by CT was estimated using Vitrea workstation version 7. This assemblage was further processed through Vitrea post-processing software to automatically calculate the volumes (Fig. 1). The volumes were measured in milliliters (mL). In addition to volume calculation, a three-dimensional reconstruction of the organ under consideration was generated. Pearson's correlation coefficient was analyzed to evaluate the relationship by region (pork belly, pork shoulder butt), and statistical processing was performed using GraphPad Prism 8. The muscle-fat ratios of pork belly taken by CT was 1 : 0.86, while that of pork shoulder butt was 1 : 0.37. As a result of CT analysis of the correlation coefficient between pork belly and shoulder butt compared to the muscle-fat ratio, the correlation coefficient was 0.5679 (R2 = 0.3295, p < 0.01). CT imaging provided very good estimates of muscle contents in cuts and in the whole carcass.
Journal of Korean Tunnelling and Underground Space Association
/
v.25
no.6
/
pp.555-567
/
2023
The cracks in the tunnel are currently determined through visual inspections conducted by inspectors based on images acquired using tunnel imaging acquisition systems. This labor-intensive approach, relying on inspectors, has inherent limitations as it is subject to their subjective judgments. Recently research efforts have actively explored the use of deep learning to automatically detect tunnel cracks. However, most studies utilize public datasets or lack sufficient objectivity in the analysis process, making it challenging to apply them effectively in practical operations. In this study, we selected test datasets consisting of images in the same format as those obtained from the actual inspection system to perform an objective evaluation of deep learning models. Additionally, we introduced ensemble techniques to complement the strengths and weaknesses of the deep learning models, thereby improving the accuracy of crack detection. As a result, we achieved high recall rates of 80%, 88%, and 89% for cracks with sizes of 0.2 mm, 0.3 mm, and 0.5 mm, respectively, in the test images. In addition, the crack detection result of deep learning included numerous cracks that the inspector could not find. if cracks are detected with sufficient accuracy in a more objective evaluation by selecting images from other tunnels that were not used in this study, it is judged that deep learning will be able to be introduced to facility safety inspection.
Recently, advancements and commercialization in the field of maritime autonomous surface ships (MASS) has rapidly progressed. Concurrently, studies are also underway to develop methods for automatically surveying the condition of various on-board equipment remotely to ensure the navigational safety of MASS. One key issue that has gained prominence is the method to obtain values from analog gauges installed in various equipment through image processing. This approach has the advantage of enabling the non-contact detection of gauge values without modifying or changing already installed or planned equipment, eliminating the need for type approval changes from shipping classifications. The objective of this study was to identify a dynamically changing indicator needle within noisy images of analog gauges. The needle object must be identified because its position significantly affects the accurate reading of gauge values. An analog pressure gauge attached to an emergency fire pump model was used for image capture to identify the needle object. The acquired images were pre-processed through Gaussian filtering, thresholding, and morphological operations. The needle object was then identified through Hough Transform. The experimental results confirmed that the center and object of the indicator needle could be identified in images of noisy analog gauges. The findings suggest that the image processing method applied in this study can be utilized for shape identification in analog gauges installed on ships. This study is expected to be applicable as an image processing method for the automatic remote survey of MASS.
Cloud coverage is a key factor in determining whether to proceed with observations. In the past, human judgment played an important role in weather evaluation for observations. However, the development of remote and robotic observation has diminished the role of human judgment. Moreover, it is not easy to evaluate weather conditions automatically because of the diverse cloud shapes and their rapid movement. In this paper, we present the development of a cloud monitoring program by applying a machine learning-based Python module "cloudynight" on all-sky camera images obtained at Miryang Arirang Astronomical Observatory (MAAO). The machine learning model was built by training 39,996 subregions divided from 1,212 images with altitude/azimuth angles and extracting 16 feature spaces. For our training model, the F1-score from the validation samples was 0.97, indicating good performance in identifying clouds in the all-sky image. As a result, this program calculates "Cloudiness" as the ratio of the number of total subregions to the number of subregions predicted to be covered by clouds. In the robotic observation, we set a policy that allows the telescope system to halt the observation when the "Cloudiness" exceeds 0.6 during the last 30 minutes. Following this policy, we found that there were no improper halts in the telescope system due to incorrect program decisions. We expect that robotic observation with the 0.7 m telescope at MAAO can be successfully operated using the cloud monitoring program.
Myung Hwan Lee;Eun-Kyung Kim;Eun Ju Lee;Ha Yan Kim;Jung Hyun Yoon
Journal of the Korean Society of Radiology
/
v.81
no.1
/
pp.157-165
/
2020
Purpose To evaluate the optimal measurement location, cut-off value, and diagnostic performance of S-Shearwave in differential diagnosis of breast masses seen on ultrasonography (US). Materials and Methods During the study period, 225 breast masses in 197 women were included. S-Shearwave measurements were made by applying a square region-of-interest automatically generated by the US machine. Shearwave elasticity was measured three times at four different locations of the mass, and the highest shearwave elasticity was used for calculating the optimal cut-off value. Diagnostic performance was evaluated by using the area under the receiving operator characteristic curve (AUC). Results Of the 225 breast masses, 156 (69.3%) were benign and 69 (30.7%) were malignant. Mean S-Shearwave values were significantly higher for malignant masses (108.0 ± 70.0 kPa vs. 43.4 ± 38.3 kPa; p < 0.001). No significant differences were seen among AUC values at different measurement locations. With a cut-off value of 41.9 kPa, S-Shearwave showed 85.7% sensitivity, 63.9% specificity, 70.7% accuracy, and positive and negative predictive values of 51.7% and 90.8%, respectively. The AUCs for US and S-Shearwave did not show significant differences (p = 0.179). Conclusion S-Shearwave shows comparable diagnostic performance to that of grayscale US that can be applied for differential diagnosis of breast masses seen on US.
Journal of the Korea institute for structural maintenance and inspection
/
v.28
no.1
/
pp.82-89
/
2024
Black ice is very difficult to recognize and reduces the friction of the road surface, causing automobile accidents. Since black ice is difficult to detect, there is a need for a system that identifies black ice in real time and warns the driver. Various studies have been conducted to prevent black ice on road surfaces, but there is a lack of research on systems that identify black ice in real time and warn drivers. In this paper, an real-time image-based analysis system was developed to identify the condition of asphalt road surface, which is widely used in Korea. For this purpose, a dataset was built for each asphalt road surface image, and then the road surface condition was identified as dry, wet, black ice, and snow using deep learning. In addition, temperature and humidity data measured on the actual road surface were used to finalize the road surface condition. When the road surface was determined to be black ice, the salt spray equipment installed on the road was automatically activated. The surface condition recognition system for the asphalt concrete pavement and black ice automatic prevention system developed in this study are expected to ensure safe driving and reduce the incidence of traffic accidents.
Jee Hyun Ahn;Jieon Go;Suk Jun Lee;Jee Ye Kim;Hyung Seok Park;Seung Il Kim;Byeong-Woo Park;Vivian Youngjean Park;Jung Hyun Yoon;Min Jung Kim;Seho Park
Korean Journal of Radiology
/
v.24
no.5
/
pp.384-394
/
2023
Objective: Mammographic density is an independent risk factor for breast cancer that can change after neoadjuvant chemotherapy (NCT). This study aimed to evaluate percent changes in volumetric breast density (ΔVbd%) before and after NCT measured automatically and determine its value as a predictive marker of pathological response to NCT. Materials and Methods: A total of 357 patients with breast cancer treated between January 2014 and December 2016 were included. An automated volumetric breast density (Vbd) measurement method was used to calculate Vbd on mammography before and after NCT. Patients were divided into three groups according to ΔVbd%, calculated as follows: Vbd (post-NCT - pre-NCT)/pre-NCT Vbd × 100 (%). The stable, decreased, and increased groups were defined as -20% ≤ ΔVbd% ≤ 20%, ΔVbd% < -20%, and ΔVbd% > 20%, respectively. Pathological complete response (pCR) was considered to be achieved after NCT if there was no evidence of invasive carcinoma in the breast or metastatic tumors in the axillary and regional lymph nodes on surgical pathology. The association between ΔVbd% grouping and pCR was analyzed using univariable and multivariable logistic regression analyses. Results: The interval between the pre-NCT and post-NCT mammograms ranged from 79 to 250 days (median, 170 days). In the multivariable analysis, ΔVbd% grouping (odds ratio for pCR of 0.420 [95% confidence interval, 0.195-0.905; P = 0.027] for the decreased group compared with the stable group), N stage at diagnosis, histologic grade, and breast cancer subtype were significantly associated with pCR. This tendency was more evident in the luminal B-like and triple-negative subtypes. Conclusion: ΔVbd% was associated with pCR in breast cancer after NCT, with the decreased group showing a lower rate of pCR than the stable group. Automated measurement of ΔVbd% may help predict the NCT response and prognosis in breast cancer.
Jeong Hoon Lee;Ki Hwan Kim;Eun Hye Lee;Jong Seok Ahn;Jung Kyu Ryu;Young Mi Park;Gi Won Shin;Young Joong Kim;Hye Young Choi
Korean Journal of Radiology
/
v.23
no.5
/
pp.505-516
/
2022
Objective: To evaluate whether artificial intelligence (AI) for detecting breast cancer on mammography can improve the performance and time efficiency of radiologists reading mammograms. Materials and Methods: A commercial deep learning-based software for mammography was validated using external data collected from 200 patients, 100 each with and without breast cancer (40 with benign lesions and 60 without lesions) from one hospital. Ten readers, including five breast specialist radiologists (BSRs) and five general radiologists (GRs), assessed all mammography images using a seven-point scale to rate the likelihood of malignancy in two sessions, with and without the aid of the AI-based software, and the reading time was automatically recorded using a web-based reporting system. Two reading sessions were conducted with a two-month washout period in between. Differences in the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, and reading time between reading with and without AI were analyzed, accounting for data clustering by readers when indicated. Results: The AUROC of the AI alone, BSR (average across five readers), and GR (average across five readers) groups was 0.915 (95% confidence interval, 0.876-0.954), 0.813 (0.756-0.870), and 0.684 (0.616-0.752), respectively. With AI assistance, the AUROC significantly increased to 0.884 (0.840-0.928) and 0.833 (0.779-0.887) in the BSR and GR groups, respectively (p = 0.007 and p < 0.001, respectively). Sensitivity was improved by AI assistance in both groups (74.6% vs. 88.6% in BSR, p < 0.001; 52.1% vs. 79.4% in GR, p < 0.001), but the specificity did not differ significantly (66.6% vs. 66.4% in BSR, p = 0.238; 70.8% vs. 70.0% in GR, p = 0.689). The average reading time pooled across readers was significantly decreased by AI assistance for BSRs (82.73 vs. 73.04 seconds, p < 0.001) but increased in GRs (35.44 vs. 42.52 seconds, p < 0.001). Conclusion: AI-based software improved the performance of radiologists regardless of their experience and affected the reading time.
Mi-ri Kwon;Eun Sook Ko;Min Su Park;Woo Kyoung Jeong;Na Young Hwang;Jae-Hun Kim;Jeong Eon Lee;Seok Won Kim;Jong Han Yu;Boo-Kyung Han;Eun Young Ko;Ji Soo Choi;Ko Woon Park
Korean Journal of Radiology
/
v.23
no.2
/
pp.159-171
/
2022
Objective: This study aimed to investigate the impact of baseline values and temporal changes in body composition parameters, including skeletal muscle index (SMI) and visceral adipose tissue area (VAT), measured using serial computed tomography (CT) imaging on the prognosis of operable breast cancers in Asian patients. Materials and Methods: This study retrospectively included 627 Asian female (mean age ± standard deviation [SD], 53.6 ± 8.3 years) who underwent surgery for stage I-III breast cancer between January 2011 and September 2012. Body composition parameters, including SMI and VAT, were semi-automatically calculated on baseline abdominal CT at the time of diagnosis and follow-up CT for post-treatment surveillance. Serial changes in SMI and VAT were calculated as the delta values. Multivariable Cox regression analysis was used to evaluate the association of baseline and delta SMI and VAT values with disease-free survival. Results: Among 627 patients, 56 patients (9.2%) had breast cancer recurrence after a median of 40.5 months. The mean value ± SD of the baseline SMI and baseline VAT were 43.7 ± 5.8 cm2/m2 and 72.0 ± 46.0 cm2, respectively. The mean value of the delta SMI was -0.9 cm2/m2 and the delta VAT was 0.5 cm2. The baseline SMI and VAT were not significantly associated with disease-free survival (adjusted hazard ratio [HR], 0.983; 95% confidence interval [CI], 0.937-1.031; p = 0.475 and adjusted HR, 1.001; 95% CI, 0.995-1.006; p = 0.751, respectively). The delta SMI and VAT were also not significantly associated with disease-free survival (adjusted HR, 0.894; 95% CI, 0.766-1.043; p = 0.155 and adjusted HR, 1.001; 95% CI, 0.989-1.014; p = 0.848, respectively). Conclusion: Our study revealed that baseline and early temporal changes in SMI and VAT were not independent prognostic factors regarding disease-free survival in Asian patients undergoing surgery for breast cancer.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.