DOI QR코드

DOI QR Code

Application of Point Shearwave Elastography to Breast Ultrasonography: Initial Experience Using "S-Shearwave" in Differential Diagnosis

Point Shearwave Elastography의 유방 초음파에서의 적용: "S-Shearwave"를 이용한 감별진단의 초기경험

  • Myung Hwan Lee (Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine) ;
  • Eun-Kyung Kim (Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine) ;
  • Eun Ju Lee (Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine) ;
  • Ha Yan Kim (Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine) ;
  • Jung Hyun Yoon (Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine)
  • 이명환 (연세대학교 의과대학 세브란스병원 영상의학과) ;
  • 김은경 (연세대학교 의과대학 세브란스병원 영상의학과) ;
  • 이은주 (연세대학교 의과대학 의생명시스템정보학교실, 의학통계지원실) ;
  • 김하얀 (연세대학교 의과대학 의생명시스템정보학교실, 의학통계지원실) ;
  • 윤정현 (연세대학교 의과대학 세브란스병원 영상의학과)
  • Received : 2019.05.02
  • Accepted : 2019.07.01
  • Published : 2020.01.01

Abstract

Purpose To evaluate the optimal measurement location, cut-off value, and diagnostic performance of S-Shearwave in differential diagnosis of breast masses seen on ultrasonography (US). Materials and Methods During the study period, 225 breast masses in 197 women were included. S-Shearwave measurements were made by applying a square region-of-interest automatically generated by the US machine. Shearwave elasticity was measured three times at four different locations of the mass, and the highest shearwave elasticity was used for calculating the optimal cut-off value. Diagnostic performance was evaluated by using the area under the receiving operator characteristic curve (AUC). Results Of the 225 breast masses, 156 (69.3%) were benign and 69 (30.7%) were malignant. Mean S-Shearwave values were significantly higher for malignant masses (108.0 ± 70.0 kPa vs. 43.4 ± 38.3 kPa; p < 0.001). No significant differences were seen among AUC values at different measurement locations. With a cut-off value of 41.9 kPa, S-Shearwave showed 85.7% sensitivity, 63.9% specificity, 70.7% accuracy, and positive and negative predictive values of 51.7% and 90.8%, respectively. The AUCs for US and S-Shearwave did not show significant differences (p = 0.179). Conclusion S-Shearwave shows comparable diagnostic performance to that of grayscale US that can be applied for differential diagnosis of breast masses seen on US.

목적 S-Shearwave를 이용하여 유방 병변을 감별하는데 있어 최적의 cut-off 값과 종괴 내 위치를 알아보고 진단적 가치를 평가하고자 한다. 대상과 방법 연구 기간 동안 197명의 여성에서 225개의 유방 병변을 평가하였다. S-Shearwave 값은 초음파 기기에서 자동적으로 생성된 사각형의 region-of-interest로 측정하였다. 병변 내 서로 다른 네 군데에서 각각 세 번 측정하였으며 세 개의 중위 값 중 최대 값을 이용해 각각의 위치에서 최적의 cut-off 값을 계산하였다. 진단적 가치는 area under the receiving operator characteristics curve (이하 AUC)를 통해 평가하였다. 결과 총 225개의 유방 병변 중 156개(69.3%)는 양성, 69개(30.7%)는 악성이었다. 평균 SShearwave 값은 악성 병변이 양성 병변에 비해 유의미하게 높았다(108.0 ± 70.0 kPa vs. 43.4 ± 38.3 kPa, p < 0.001). 하지만 병변 내 위치에 따른 값의 유의미한 차이는 없었다. Cut-off 값을 41.9 kPa로 사용했을 때, 민감도 85.7%, 특이도 63.9%, 정확도 70.7%, 양성예측도 51.7% 및 음성예측도 90.8%였다. 초음파와 S-Shearwave 간의 AUC는 유의미한 차이를 보이지 않았다(p = 0.179). 결론 S-Shearwave는 유방 병변의 감별진단을 하는데 grayscale 초음파에 필적하는 진단적 가치를 가진다.

Keywords

Acknowledgement

This study has been supported by the research fund of Samsung Medison, Co. Ltd.

References

  1. American College of Radiology. Breast imaging reporting and data system. 5th ed. Reston, VA: American College of Radiology 2013
  2. Hong AS, Rosen EL, Soo MS, Baker JA. BI-RADS for sonography: positive and negative predictive values of sonographic features. AJR Am J Roentgenol 2005;184:1260-1265 https://doi.org/10.2214/ajr.184.4.01841260
  3. Kim EK, Ko KH, Oh KK, Kwak JY, You JK, Kim MJ, et al. Clinical application of the BI-RADS final assessment to breast sonography in conjunction with mammography. AJR Am J Roentgenol 2008;190:1209-1215 https://doi.org/10.2214/AJR.07.3259
  4. Costantini M, Belli P, Lombardi R, Franceschini G, Mule A, Bonomo L. Characterization of solid breast masses: use of the sonographic breast imaging reporting and data system lexicon. J Ultrasound Med 2006;25:649-659; quiz 661 https://doi.org/10.7863/jum.2006.25.5.649
  5. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 2006;239:341-350 https://doi.org/10.1148/radiol.2391041676
  6. Lee EJ, Jung HK, Ko KH, Lee JT, Yoon JH. Diagnostic performances of shear wave elastography: which parameter to use in differential diagnosis of solid breast masses? Eur Radiol 2013;23:1803-1811 https://doi.org/10.1007/s00330-013-2782-5
  7. Yoon JH, Jung HK, Lee JT, Ko KH. Shear-wave elastography in the diagnosis of solid breast masses: what leads to false-negative or false-positive results? Eur Radiol 2013;23:2432-2440 https://doi.org/10.1007/s00330-013-2854-6
  8. Berg WA, Cosgrove DO, Dore CJ, Schafer FK, Svensson WE, Hooley RJ, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 2012;262:435-449 https://doi.org/10.1148/radiol.11110640
  9. Burnside ES, Hall TJ, Sommer AM, Hesley GK, Sisney GA, Svensson WE, et al. Differentiating benign from malignant solid breast masses with US strain imaging. Radiology 2007;245:401-410 https://doi.org/10.1148/radiol.2452061805
  10. Cho N, Moon WK, Kim HY, Chang JM, Park SH, Lyou CY. Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. J Ultrasound Med 2010;29:1-7 https://doi.org/10.7863/jum.2010.29.1.1
  11. Chang JM, Moon WK, Cho N, Yi A, Koo HR, Han W, et al. Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases. Breast Cancer Res Treat 2011;129:89-97 https://doi.org/10.1007/s10549-011-1627-7
  12. Choi K, Kong D, Hah Z, Lee HK. A reliability index of shear wave speed measurement for shear wave elastography. Piscataway: IEEE 2015
  13. Deffieux T, Gennisson JL, Bercoff J, Tanter M. On the effects of reflected waves in transient shear wave elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2011;58:2032-2035 https://doi.org/10.1109/TUFFC.2011.2052
  14. Tozaki M, Isobe S, Fukuma E. Preliminary study of ultrasonographic tissue quantification of the breast using the acoustic radiation force impulse (ARFI) technology. Eur J Radiol 2011;80:e182-187 https://doi.org/10.1016/j.ejrad.2011.05.020
  15. Wojcinski S, Brandhorst K, Sadigh G, Hillemanns P, Degenhardt F. Acoustic radiation force impulse imaging with Virtual TouchTM tissue quantification: mean shear wave velocity of malignant and benign breast masses. Int J Womens Health 2013;5:619-627 https://doi.org/10.2147/IJWH.S50953
  16. Tozaki M, Isobe S, Sakamoto M. Combination of elastography and tissue quantification using the acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses. Jpn J Radiol 2012;30:659-670 https://doi.org/10.1007/s11604-012-0106-3
  17. Teke M, Goya C, Teke F, Uslukaya O, Hamidi C, Cetincakmak MG, et al. Combination of virtual touch tissue imaging and virtual touch tissue quantification for differential diagnosis of breast lesions. J Ultrasound Med 2015;34:1201-1208 https://doi.org/10.7863/ultra.34.7.1201
  18. Evans A, Whelehan P, Thomson K, McLean D, Brauer K, Purdie C, et al. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res 2010;12:R104