• Title/Summary/Keyword: automatic transfer crane

Search Result 17, Processing Time 0.026 seconds

Position Calibration System of Automatic Transfer Crane (자동 트랜스퍼 크레인의 위치보정 시스템)

  • 박경택;박찬훈;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.515-520
    • /
    • 2002
  • Automatic Transfer Crane is needed for automation of container terminal. It requires the control capability of exact position for loading/unloading job in yard. But it has the limitation of improvement because it has the operational environmental and its structural problems. It has the positioning errors caused by the deformation of rail, yawing motion of crane, wear of wheel, sliding motion between wheel and rail and so on. This study shows the calibration method of crane position by using the primitivity sensor and calibrating plate fixed on the ground.

  • PDF

Hardware-In-The-Loop Simulation (HILS) Based Design and Robustness Evaluation of an Intelligent Gantry Crane System

  • ;Jalani, Jamaludin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1729-1734
    • /
    • 2005
  • The use of gantry crane systems for transporting payload is very common in industrial application. However, moving the payload using the crane is not an easy task especially when strict specifications on the swing angle and on the transfer time need to be satisfied. To overcome this problem, this paper describes development of an intelligent gantry crane system based on the mechatronic design. A lab-scale gantry crane is designed and then its intelligent controllers are developed. Fuzzy logic controllers are adopted, designed and implemented for controlling payload position as well as the swing angle of the gantry crane. The performance of the intelligent gantry crane system is evaluated on a hardware-in-the-loop simulation (HILS) environment. Moreover robustness of the proposed system is also evaluated. The result shows that the intelligent gantry crane system designed based on the mechatronic design approach has better performance compared with the automatic gantry crane system controlled by classical PID controllers. Moreover simulation result shows that the intelligent gantry crane system is more robust to parameter variation than the automatic gantry crane system.

  • PDF

Automatic Landing System of Container Spreader (컨테이너 스프레더의 자동 랜딩 시스템)

  • 박경택;박찬훈;박영근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1688-1692
    • /
    • 2003
  • The automatic Landing system is used for the automatic functions of automatic transfer crane in the automated container terminal. It confirms and adjusts the alignment and pose between spreader and container and accomplishes the automatic loading/unloading job of containers in yard. Specially, it is required in the automated container terminal and is well adapted under the coarse external environments. This system used the laser sensors to recognize the alignment between spreader and container. In this paper the algorithm of recognition of the alignment and pose is presented and the result of its simulation is shown.

  • PDF

A Study on Development ATCS of Transfer Crane using Neural Network Predictive Control (신경회로망 예측제어에 의한 Transfer Crane의 ATCS 개발에 관한 연구)

  • 손동섭;이진우;이영진;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.113-119
    • /
    • 2002
  • Recently, an automatic crane control system is required with high speed and rapid transportation. During the operation of crane system in container yard it is necessary to control the crane trolley position and loop length so that the swing of the hanging container is minimized We can do development of unmanned automation control system using automation travel control technique and anti-sway technique in crane system. Therefore, we designed a controller for Automation travel control to control the transfer crane system. Analyzed crane system through simulation, and proved excellency of control performance than other conventional controllers.

  • PDF

Anti-Sway System of Container Transfer Crane for Automated Container Terminal : Part I - Basic Structure, Modeling and Control (자동화 컨테이너 터미널을 위한 컨테이너 트랜스퍼 크레인의 안티 스웨이 시스템;Part I - 기본 구조, 모델링, 제어)

  • 박찬훈;김두형;신영재;박경택
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1112-1118
    • /
    • 2004
  • Automated container terminals have been developed over the world years and many countries are interested in them because the amount of containers exported or imported is rapidly increasing. The conventional container terminals were not designed to handle this kind of heavily many containers. They would face many structural problems soon or later, although they have been managed to do well so far. One of the most important things in automated container terminal is the handing equipments able to transfer many containers efficiently. Those are maybe automated transfer cranes, automatic guided vehicles and automated quay-side cranes. The word 'automated' means the equipment is operated without drivers and those equipments are able to work without any interruption in working schedule. Through the researches on the conventional transfer cranes, we decided that the structure of conventional transfer cranes is not proper in automated container terminal and it is not possible to handle so many container in limited time. Therefore we have been studying on the proper structure of the automated container for past several years and a new type of transfer cranes has been developed. Design concept and control method of the new crane are introduced and experimental results are presented in this paper.his paper.

A Study on A Development of Automatic Travel Control System of Crane using Neural Network Predictive Two Degree of Freedom PID Controller (신경회로망 예측 2자유도 PID 제어기를 이용한 크레인의 자동주행 제어 시스템 개발에 관한 연구)

  • Sohn, Dong-Seop;Lee, Chang-Hoon;Lee, Jin-Woo;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2788-2790
    • /
    • 2002
  • In this paper, we designed neural network predictive two degree of freedom PID controller to control sway of crane Crane's trolley arrive minimum oscillation of transfer body and establishment position in minimum time. When various establishment location and surrounding disturbance were approved based on mathematical modeling of crane, controller designed to become effective control location error and oscillation angle of two control variables that simultaneously can predictive control. We wish to develop automatic travel control system through anti-sway skill of crane.

  • PDF

Anti-Sway System for Container Transfer Crane for Automated Container Terminal: Part Ⅱ - Model Crane Implementation and Verification (자동화 컨테이너 터미널을 위한 컨테이너 트랜스퍼 크레인의 안티스웨이 시스템: Part Ⅱ-모델 크레인 및 실험 검증)

  • Park ChanHun;Kim DooHyung;Shin YoungJae;Park KyoungTaik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1287-1294
    • /
    • 2004
  • Automated container terminals have been being developed over the world for recent years and many countries are interested in it because the amount of containers exported or imported is rapidly increasing. The conventional container terminals were not designed to control this kind of heavily many containers. They would face many structural problems soon or later, although they have managed to do well so far. One of the most important things in developing automated container terminal is to develop the equipment able to handle many containers efficiently. Those are maybe automated transfer cranes, automatic guided vehicles, and automated quay-side cranes. The word 'automated' means the equipment is operated without drivers and those equipments are able to work without any interruption in working schedule. Through the researches on the conventional transfer cranes, we decided that the structure of the conventional transfer cranes is not efficient in automated container terminal and it's not possible to handle so many containers in limited time. Therefore we have been studying on the proper structure of the automated container crane for past several years and a new type of transfer crane has been developed. Design concept and control method of a new type of transfer crane had been presented in the previous paper: Part Ⅰ. Experimental features will be presented with a model transfer crane in this paper: Part Ⅱ.

A Study on Anti-Sway of Crane using Neural Network Predictive PID Controller (Anti-Sway에 관한 연구)

  • 손동섭;이진우;민정탁;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.219-227
    • /
    • 2002
  • In this paper, we designed neural network predictive PID controller to control sway happened in transfer of trolley for automatic travel control system. We include dynamic character of nonlinear system, and mathematical expression veny simple used neural network. When various establishment location and surrounding disturbance were approved based on mathematical modelling of crane, controller designed to become effective control location error and vibration angle of two control variables that simultaneously can predictive control. Neural network predictive PID controller produced parameter of PID controller using neural network self-tuner. Neural network self-tuner's input used crane's output and neural network predictive output. Neural network self-tuner using error back propagation algorithm. We analyzed control performance comparison through computer simulation when applied disturbance about sway of location and angle in transfer of crane. The results show that the proposed neural network predictive PID controller has better performances than general PID controller, neural network PID controller.

  • PDF

A Study on Development ATCS of Transfer Crane using Neural Network Predictive Control (신경회로망 예측제어에 의한 Transfer Crane의 ATCS개발에 관한 연구)

  • Sohn, Dong-Seop;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.5
    • /
    • pp.537-542
    • /
    • 2002
  • Recently, an automatic crane control system is required with high speed and rapid transportation. Therefore, when container is transferred from th intial coordinate to the finial coordinate, the container paths should be built in terms of the least time and no swing. So in this paper, we calculated the anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the neural network predictive PID (NNPPID) controller to control the precise navigation. The proposed predictive control system is composed of the neural network predictor, PID controller, neural network self-tuner which yields parameters of PID. Analyzed crane system through simulation, and proved excellency of control performance than other conventional controllers.

Implementation of Efficient Container Number Recognition System at Automatic Transfer Crane in Container Terminal Yard (항만 야드 자동화크레인(ATC)에서 효율적인 컨테이너번호 인식시스템 개발)

  • Hong, Dong-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.57-65
    • /
    • 2010
  • This paper describes the method of efficient container number recognition in colored container image with number plate at ATC(Automatic Transfer Crane) in container terminal yard. At the Sinseondae terminal gate in Busan, the container number recognition system is installed by "intelligent port-logistics system technology development", that is government research and development project. It is the method that it sets up the tunnel structure inside camera on the gate and it recognizes the container number in order to recognize the export container cargo automatically. However, as the automation equipment is introduced to the container terminal and the unmanned of a task is gradually accomplished, the container number recognition system for the confirmation of the object of work is required at ATC in container terminal yard. Therefore, the container number recognition system fitted for it is necessary for ATC in container terminal yard in which there are many intrusive of the character recognition through image including a sunlight, rain, snow, shadow, and etc. unlike the gate. In this paper, hardware components of the camera, illumination, and sensor lamp were altered and software elements of an algorithm were changed. that is, the difference of the brightness of the surrounding environment, and etc. were regulated for recognize a container number. Through this, a shadow problem, and etc. that it is thickly below hung with the sunlight or the cargo equipment were solved and the recognition time was shortened and the recognition rate was raised.