• Title/Summary/Keyword: automatic train stop

Search Result 49, Processing Time 0.03 seconds

A Review on signaling system for new high speed train test at the existing high speed line (기존 고속선에서 고속열차 최고속도시험을 위한 신호분야검토)

  • Lee, Jae-Ho;Shin, Duc-Ko;Lee, Kang-Mi
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1031-1033
    • /
    • 2008
  • 차세대 한국형 고속열차는 분산형 시스템으로 최고속도 400km/h, 운행속도 350km/h을 목표로 개발중에 있다. 차세대 고속열차의 신호시스템은 기존선의 자동열차정지(ATS, Automatic Train Stop) 및 자동열차방호(ATP, Automatic Train Protection)와 고속선의 자동열차제어(ATC, Automatic Train Control) 신호방식을 모두 사용하는 ATP+ATS+ATC 형태의 차상장치가 개발 설치될 예정이다. 따라서 이러한 장치의 개발과 연계하여 차세대 한국형 고속열차는 기존 경부고속선에서 시험주행을 할 예정이다. 따라서 기존 경부고속선에서 차세대 고속열차의 최고 속도시험를 위한 신호분야의 방안을 검토하고자 한다. 본 논문에서는 3가지의 방안을 제시하여 적합성과 운영효율성을 고려하여 최적의 방안을 도출하는 방식으로 전개할 예정이다.

  • PDF

A study of eatablishing ETCS Level 1 to speed up conventional lines (기존선 속도향상을 위한 ETCS Level 1 구축방안 연구)

  • Yoon, Yong-Ki;Jeong, Rag-Gyo;Kim, Chae-Duck
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.666-670
    • /
    • 2011
  • ATS(Automatic Train Stop)s are is effected by track environment, signal distance and train braking distance. So onboard signaling systems such as ATP(Automatic Train Protection) are installed on conventional lines by some train operation companies. With the mixed signalling, the onboard signaling system is overlaid on a conventional line with ATS, it is possible to run the line with conventional trains and ATP trains and to use the advantages of ATP(higher speed or more trains on the line). This paper includes guidelines a mixed signalling(ETCS and ATS) system architecture, operation concepts and infill balise installation.

  • PDF

A Study on the Coupling Coefficient between ATP Antenna and ATS Antenna in Combined On-Board System (차상통합신호시스템에서 ATP 안테나와 ATS 안테나 사이의 결합계수에 관한 연구)

  • Kim, Doo-Gyum;Kim, Min-Seok;Kim, Min-Kyu;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.211-225
    • /
    • 2011
  • Railroad signalling systems are to control intervals and routes of trains. There are ATS(Automatic Train Stop), ATP(Automatic Train Protection), ATO(Automatic Train Operation) and ATC(Automatic Train Control) system. Trains are operated in the section which is met on the signalling system because various signalling systems are used in Korea. On the other words, trains are not operated in the section which is used in the other signalling system. To solve this problem, recently combined on-board system has been developed. The combined on-board system is designed by doubling the ATS, ATP and ATC system. Information signal is received by magnetic sensors in the ATC system and is received by antennas in the ATS and ATP system. Therefore, it is possible to arise transmission problems by magnetic coupling. In this paper, electric model of the ATS and ATP antenna is suggested and interference frequency by the magnetic coupling between the ATS and ATP antenna is estimated numerically. As a results of the magnetic coupling, the value of the magnetic coupling is presented without magnetic induction.

  • PDF

A Study on the Reliability Management of Onboard Signaling Equipment for the Korean Tilting Train (한국형 틸팅열차 차상신호장치 신뢰성관리에 대한 연구)

  • Shin, Duck-O;Baek, Jong-Hyun;Lee, Knag-Me;Kim, Yong-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.852-858
    • /
    • 2009
  • This paper is a study on the reliability management of onboard signaling equipment for the Koran Tilting Train (TTX) to run the existing railway to express railway. For safe running of tilting train which operates at Automatic Train Protection (ATP) and Automatic Train Stop (ATS), a reliability management plan for TTX onboard is proposed for preventing train safety from driver oversight and malfunction by establishing braking curves based on movement authority and speed limit, according to preceding train location and rail conditions. Also, reliability of TTX onboard equipment on the basis of proposed plan was estimated, and actual case studies based on the international requirements IEC 62278 (EN 50126) were provided to verify its reliability.

Using SDU Slip/Slide Control (SDU 장치를 이용한 Slip/Slide 제어방안)

  • Park, Ju-Yeon;Kang, Deok-Won;Lee, Jong-Seong
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.377-383
    • /
    • 2011
  • The paper is to perceive accurately speed of the train through redundant processor operation. When Slip/slide is occurred at the axle, the train is applied brake force using the Tachometer and the Doppler sensor which assistance equipment. One of the main features of railway signaling system is that rolling stock is made stop to avoid collision with the rolling stock ahead when the rolling stock exceeds its maximum operating speed in line. In addition, in the case of the rolling stock with automatic train operation, it carries out activities such as braking and propulsion using the difference between its actual speed and target speed at the point. To perform these functions, it is essential to calculate the exact speed of the rolling stock in signaling equipment on vehicles. Train speed detection unit are composed of the Tachometer and the Doppler sensor, and speed information is sent to the SDU unit. The processor of SDU unit calculates the speed of the train using compare logic the received speed information. Even if there are Slip/Slide, signaling system is available to apply exact braking, to improve stop on position and to guarantee the safety of trains.

  • PDF

A Study about Preventing Improper Working of Equipment on ATS System by Signaling Equipment (신호장치에 의한 ATS 신호장치 오동작 방지에 대한 연구)

  • Ko, Young-Hwan;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.579-587
    • /
    • 2008
  • Promotion of the line no.2 in Seoul Metro was changing from the existing signaling facilities for ATS(Automatic Train Stop) vehicles to the up-to-date signaling facilities for ATO(Automatic Train Operation). But, in consequence of conducting a trial run after being equipped with the ATO signaling facilities, the matter related to mix-operation with the existing ATS signaling facilities appeared. The operation of the existing ATS signaling system in combination with the ATO signaling system has made improper working related to frequency recognition of the ATS On-board Computerized Equipment. This obstructs operation of a working ATS vehicle. That is, as barring operation of an ATS vehicle that should proceed, it may make the proceeding ATS vehicle stop suddenly and after all, it will cause safety concerns. In this paper, we designed a wayside track occupancy detector that previously prevents improper working related to frequency recognition of the ATS On-board Computerized Equipment by gripping classification and working processes of operating trains throughout transmission of local signaling information from the existing facilities, which does not need to change or replace the existing signaling facilities. Furthermore, we described general characteristics of the wayside track occupancy detector and modeled the IFC(InterFace Contrivance) device and the logical circuit recognizing signal information. Then, we made an application program of PLC(programmable Logic Computer) based on the stated model. We, in relation to data transfer method, used the frame in TCP/IP transfer mode as the standard, and we demonstrated that ATO transmission frequency is intercepted.

  • PDF

System and method for accurate train stop in manual operation mode (수동운전 모드에서 정위치 정차 방법 및 연동 시스템)

  • Son Young-Jin;Ahn Cheong-Mo;Jeong Dong-Yoon;Park Byoung-No
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1504-1506
    • /
    • 2004
  • The platform screen door(PSD) hasn't been installed yet within the manual operation system, that is, ATS & ATC Signal system. In other countries, it is mostly installed and operated within automatic operation system, that is, ATO. Especially, as a part of the environment friendly system installation, the installation of PSD shall be considered aggressively to improve the air quality in the underground area and to maintain the air-conditioning. Besides the number of suicides in the subway station gets increased these days causing safety hazard, so the installation of PSD is positively reviewed. To install PSD in the manual operation system, it is important to stop the train at the correct position. So we would like to suggest the technical system thereby.

  • PDF

A Study on Improvement of PSD Interface Using 2.4GHz Wireless Communication, (2.4GHz 무선 통신을 이용한 PSD 인터페이스 개선에 관한 연구)

  • Kim, Jae-Pil;Hyun, Yong-Sub;Chang, Kyong-Song
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1408-1415
    • /
    • 2007
  • To operate Platform Screen Door (PSD) automatically, the operational data of PSD and the train must be interfaced properly. PSD and train are operated together by the signaling system in Automatic Train Operation (ATO) signaling system zone where interfaces are provided between PSD and train. However, the additional PSD interface system with train is required in train operating zone without the interface between PSD and train. For the PSD interface, the wireless communication system or the train status (train correct stop status / train door status) detection system has been used. Seoul Metro line No.2. has the PSD wireless communication system using 447MHz band RF. For the safety of PSD operation, it is required to prevent RF interference in the subway environment where many frequencies exist. In this paper, the PSD wireless communication system is developed using 2.4GHz band RF to prevent the interference of the wireless communication and increase the traffic of the PSD interface. Furthermore, the improved system can store, manage and display the PSD and train operational data using Human Machine Interface (HMI) in the train's driver cab.

  • PDF

The Interface Scheme and Application Between Rolling Stock System and PSD (철도차량시스템과 PSD간 인터페이스 방안 및 적용 현황)

  • Lee Jong-Seong;Min Young-Ki;Kim Kyoung-Shik;Choi Jong-Mook
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1510-1512
    • /
    • 2004
  • Platform Screen Door System is a facility on platform to separate platform from track, having automatic sliding door structures interlocked to opening and closing of train door with integrated control unit. When a train comes to a stop at a designed position at a station, onboard ATC/ATO system transmits train berth signal to wayside signaling system. In case of automatic/driverless operation, opening and closing of the Platform Screen Door will be controlled by wayside signaling system. Unfortunately, we often see the case in news that passengers fall into track and their contact with train lead to critical accidents. However, passengers will be free from such accidents on the platform with the Platform Screen Door System. Especially during the rush hours, to ensure passenger's safety and smooth getting on & off, it is necessary to arrange. some station staffs on the platform without the Platform Screen Door System. On the other hand, the Platform Screen Door System will realize such operation by fewer staffs. Due to the above reasons, the Platform Screen Door System is becoming more popular in subway system recently.

  • PDF

A Study on the Hazard Identification and Risk Mitigation for ATSRX Using Hazard and Operability Study (HAZOP Study를 사용한 ATSRX의 위험원도출 및 리스크 완화에 관한 연구)

  • LEE Jun-Ho;LEE Kang-Mi;KIM Yong-Kyu;SHIN Ducko
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.533-538
    • /
    • 2005
  • In this paper we identity the hazard using HAZOP study for ATSRX which is a subsystem of the ATP system, and we study a safety management method for the mitigation of the risk to the acceptable level. ATSRX is a device that make a train which has a ATP system operate in ATS line. For this ATSRX send a induction signal with ATS system to vehicle controller. Thus ATSRX can be said a safety equipment that makes a train operate safely. In order to identify the hazard for the internal faults in ATSRX system, we employ HAZOP study method which is recommended as hazard identification in IEC 62278, RAMS requirements in railway signal, and also it provide the detail activity in IEC 61882. Thus, in this paper we perform HAZOP study based on ATSRX related standards and using the assessment of the identified hazard we study a method to guarantee the system safety through the change of the design to mitigate the risk to the acceptable level.