• Title/Summary/Keyword: automatic modeling

Search Result 650, Processing Time 0.051 seconds

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

The Design and Implementation of Automatic Converter of Maya Data And SEDRIS STF Data (Maya 데이터와 SEDRIS STF 데이타간의 자동변환기 설계 및 구현)

  • Yong Do, Her;Kwong-Hyung, Lee
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.6
    • /
    • pp.141-150
    • /
    • 2004
  • The method of reusing the environmental data which is previously modelled in modeling and simulation is very important. So, we need an environmental data representation and interchange mechanism which satisfies the requirements of sharing. The SEDRIS STF(SEDRIS Transmittal Format) provides environmental data users and producers with a clearly defined interchange specification. In this paper, We design and implement an automatic converter which converts commercial data(Maya) format to standard interchange format and vice verse without losing semantic of information content using SEDRIS standard interchange format.

  • PDF

AUTOMATIC MESH GENERATION AROUND SHIP HULL USING THE MACRO (매크로 기능을 이용한 선박 격자의 자동 생성 기법)

  • Lee, J.H.;Rhee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.71-76
    • /
    • 2009
  • The research to predict the resistance performance of the ship using the CFD analysis is increasing. For the CFD numerical analysis the computational mesh, which is proper to computational model, has to be made before the analysis is begun. In the parametric study, even though the deformation of each case is not very sharp, the whole computational mesh should be regenerated according to the conventional way. Hence, lots of effort is needed to repeated mesh generation work. To solve these problems, the automatic mesh generation method using the macro function of commercial CAD program and mesh generation program is introduced in this study. First, in the CAD program, by using the macro function and putting the deformation rate of bow and stern in lengthwise, the repeated modeling work is performed automatically. Next, the generated geometries are read by the mesh generation program and the proper mesh for the geometry is created automatically also using the macro function. The hybrid mesh which has unstructured grid near the bow and stern and structured grid in the remaining part of domain is used. The verification of the developed method is done by applying the method to predict the resistance performance of the podded propulsion cruise ship of the Daewoo Shipbuilding & Marine Engineering (DSME) in the cases of different length of bow and stern and pod set in different position. The author believes that the introduced method can help to make the database to optimize the resistance performance of the ship in various cases can be constructed without difficulty.

  • PDF

Grinding robot system for car brazing bead

  • Kang, Hyo-Sik;Lee, Woo-Ho;Park, Jong-Oh;Lee, Gwang-Se;Shin, Hyoun-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.160-163
    • /
    • 1993
  • In this paper, design of an automatic grinding robot system for car brazing bead is introduced. Car roof and side panels are joined using brazing, and then the brazing bead is processed so that the bead is invisible after painting. Up to now the grinding process is accomplished manually. The difficulties in automation of the grinding process are induced by variation of position and shape of the bead and non-uniformity of the grinding area due to surface deformation. For each car, the grinding area including the brazing bead is sensed and then modeled using a 2-D optical sensor system. Using these model data, the position and the direction of discrete points on the car, body surface are obtained to produce grinding path for a 6 degrees of freedom grinding robot. During the process, it is necessary to sense the reaction forces continuously to prepare for the unexpected circumstances. In addition, to meet the line cycle time it is necessary to reduce the required time in sensing, signal processing, modeling, path planning and data transfer by utilizing real-time communication of the information. The key technique in the communication and integration of the complex information is obtaining in-field reliability. This automatic grinding robot system may be regarded as a jump in the intelligent robot processing technique.

  • PDF

Active Contours Level Set Based Still Human Body Segmentation from Depth Images For Video-based Activity Recognition

  • Siddiqi, Muhammad Hameed;Khan, Adil Mehmood;Lee, Seok-Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2839-2852
    • /
    • 2013
  • Context-awareness is an essential part of ubiquitous computing, and over the past decade video based activity recognition (VAR) has emerged as an important component to identify user's context for automatic service delivery in context-aware applications. The accuracy of VAR significantly depends on the performance of the employed human body segmentation algorithm. Previous human body segmentation algorithms often engage modeling of the human body that normally requires bulky amount of training data and cannot competently handle changes over time. Recently, active contours have emerged as a successful segmentation technique in still images. In this paper, an active contour model with the integration of Chan Vese (CV) energy and Bhattacharya distance functions are adapted for automatic human body segmentation using depth cameras for VAR. The proposed technique not only outperforms existing segmentation methods in normal scenarios but it is also more robust to noise. Moreover, it is unsupervised, i.e., no prior human body model is needed. The performance of the proposed segmentation technique is compared against conventional CV Active Contour (AC) model using a depth-camera and obtained much better performance over it.

Development of Virtual Prototype for Separator Winding and Inserting Machine of Battery Assembly Line (건전지 세퍼레이터 와인딩 및 삽입시스템의 Virtual Prototype 개발)

  • 정상화;차경래;신병수;나윤철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.727-730
    • /
    • 2002
  • Most of battery industries are growing explosively as a core strategy industry for the development of the semi-conductor, the LCD, and the mobile communication device. Dynamic characteristic analysis consists of dynamic behavior analysis and finite element analysis and is necessary for effective design of machines. In the dynamic behavior analysis, the displacement, velocity, applied force and angular velocity of each components are simulated according to each part. In the FEA, stress analysis, mode analysis, and frequency analysis are performed far each part. The results of these simulations are used for the design specification investigation and compensation for optimal design of cell manufacturing line. Virtual Engineering of the separator inserting machine on the automatic cell assembly line systems are modeled and simulated. 3D motion behavior is visualized under real-operating condition on the computer window. Virtual Prototype make it possible to save time by identifying design problems early in development, cut cost by reducing making hardware prototype, and improve quality by quickly optimizing full-system performance. As the first step of CAE which integrates design, dynamic modeling using ADAMS and FEM analysis using NASTRAN are developed.

  • PDF

Comparison between Fuzzy and Adaptive Controls for Automatic Steering of Agricultural Tractors (농용트랙터의 자동조향을 위한 퍼지제어와 적응제어의 비교)

  • 노광모
    • Journal of Biosystems Engineering
    • /
    • v.21 no.3
    • /
    • pp.283-292
    • /
    • 1996
  • Automatic guidance of farm tractors would improve productivity by reducing operator fatigue and increasing machine performance. To control tractors within $\pm$5cm of the desired path, fuzzy and adaptive steering controllers were developed to evaluate their characteristics and performance. Two input variables were position and yaw errors, and a steering command was fed to tractor model as controller output. Trapezoidal membership functions were used in the fuzzy controller, and a minimum-variance adaptive controller was implemented into the 2-DOF discrete-time input-output model. For unit-step and composite paths, a dynamic tractor simulator was used to test the controllers developed. The results showed that both controllers could control the tractor within $\pm$5cm error from the defined path and the position error of tractor by fuzzy controller was the bigger of the two. Through simulations, the output of self-tuning adaptive controller was relatively smooth, but the fuzzy controller was very sensitive by the change of gain and the shape of membership functions. Contrarily, modeling procedure of the fuzzy controller was simple, but the adaptive controller had very complex procedure of design and showed that control performance was affected greatly by the order of its model.

  • PDF

Development of Hybrid-FDM Process Using Automatic Tool Changer for Multi-Material Production and Post-Processing (자동공구교환장치를 이용한 융합 FDM 공정 및 장치개발에 관한 연구)

  • Choi, Sung Min;Jian, Xiao;Park, In Baek;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.235-242
    • /
    • 2016
  • The purpose of this study is an attempt to improve the functionality of a conventional Fused Deposition Modeling (FDM) process using the Automatic Tool Changer (ATC) to perform multimaterial production and post-processing. Hybrid-FDM means a fusion of an Additive Manufacturing process and grinding process using the ATC system. In order to enhance the potentiality of production capacity for multi-material fabrication and surface roughness improvement, two extrusion tools and one grinding tool system are suggested. A pneumatic chuck is attached on a moving platform in the XY axes plane and an extrusion head and grinding head are placed in a docking station, allowing for a quick changeover with each other. Therefore, the manufacturing lead time can be reduced efficiently for the fabrication of a product.

Development of A Validation System For Automatic Radiopharmaceutical Synthesis Process Using Network Modeling (방사성의약품 합성 프로세스 검증을 위한 네트워크 모델링)

  • Lee, Cheol-Soo;Heo, Eun-Young;Kim, Jong-Min;Kim, Dong-Soo
    • IE interfaces
    • /
    • v.24 no.3
    • /
    • pp.187-195
    • /
    • 2011
  • The automatic radiopharmaceutical module consists of several 2-way valves, couple of syringes, gas supply unit, heating(cooling) unit and sensors to control the chemical reagents as well as to help the chemical reaction. In order to control the actuators of radiopharmaceutical module, the process is tabulated using spread sheet as like excel. Unlike the common program, a trivial error is too critical to allowed in the process because the error can lead to leak the radioactive reagent and to cause the synthesis equipment failure during synthesizing. Hence, the synthesis process has been validated using graphic simulation while the operator checks the whole process visually and undergoes trial and error. The verification of the synthesis process takes a long time and has a difficulty in finding the error. This study presents a methodology to verify the process algebraically while the radiopharmaceutical module is converted to the network model. The proposed method is validated using actual synthesis process.