• 제목/요약/키워드: automatic estimation

검색결과 505건 처리시간 0.032초

특징벡터 결합과 신경회로망을 이용한 전력외란 식별 (Classification of Power Quality Disturbances Using Feature Vector Combination and Neural Networks)

  • 남상원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.671-674
    • /
    • 1997
  • The objective of this paper is to present a new feature-vector extraction method for the automatic detection and classification of power quality(PQ) disturbances, where FIT, DWT(Discrete Wavelet Transform), and Fisher's criterion are utilized to extract an appropriate feature vector. In particular, the proposed classifier consists of three parts: i.e., (i) automatic detection of PQ disturbances, where the wavelet transform and signal power estimation method are utilized to detect each disturbance, (ii) feature vector extraction from the detected disturbance, and (iii) automatic classification, where Multi-Layer Perceptron(MLP) is used to classify each disturbance from the corresponding extracted feature vector. To demonstrate the performance and applicability of the proposed classification algorithm, some test results obtained by analyzing 10-class power quality disturbances are also provided.

  • PDF

HMM-Based Automatic Speech Recognition using EMG Signal

  • Lee Ki-Seung
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권3호
    • /
    • pp.101-109
    • /
    • 2006
  • It has been known that there is strong relationship between human voices and the movements of the articulatory facial muscles. In this paper, we utilize this knowledge to implement an automatic speech recognition scheme which uses solely surface electromyogram (EMG) signals. The EMG signals were acquired from three articulatory facial muscles. Preliminary, 10 Korean digits were used as recognition variables. The various feature parameters including filter bank outputs, linear predictive coefficients and cepstrum coefficients were evaluated to find the appropriate parameters for EMG-based speech recognition. The sequence of the EMG signals for each word is modelled by a hidden Markov model (HMM) framework. A continuous word recognition approach was investigated in this work. Hence, the model for each word is obtained by concatenating the subword models and the embedded re-estimation techniques were employed in the training stage. The findings indicate that such a system may have a capacity to recognize speech signals with an accuracy of up to 90%, in case when mel-filter bank output was used as the feature parameters for recognition.

계수 추정 기법을 이용한 동조자이로스코프 온도 제어기의 설계 (Design of the Temperature Controller for a Dynamically Tuned Gyroscope Using Parameter Estimation Methods)

  • 송진우;이장규;강태삼;김진원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1146-1148
    • /
    • 1996
  • In this paper, uncertain parameters of the heat transfer model of a Dynamically Tuned Gyroscope (DTG) are estimated by the Recursive Least Squares (RLS) method. Also, using this model, a temperature controller for a DTG is designed. As the temperature controller, a PI controller is used. It is presented that a controller can be easily designed when the heat transfer model of a DTG is used. By simulations and experiments, it is shown that the estimated heat transfer model is appropriate and the desired performance of the temperature controller is satisfied.

  • PDF

국제해상충돌예방규칙을 고려한 확률적 속도 장애물 기반의 선박 충돌회피 알고리즘 (Automatic Ship Collision Avoidance Algorithm based on Probabilistic Velocity Obstacle with Consideration of COLREGs)

  • 조용훈;한정욱;김진환;이필엽
    • 대한조선학회논문집
    • /
    • 제56권1호
    • /
    • pp.75-81
    • /
    • 2019
  • This study presents an automatic collision avoidance algorithm for autonomous navigation of unmanned surface vessels. The performance of the collision avoidance algorithm is heavily dependent on the estimation quality of the course and speed of traffic ships because collision avoidance maneuvers should be determined based on the predicted motions of the traffic ships and their trajectory uncertainties. In this study, the collision avoidance algorithm is implemented based on the Probabilistic Velocity Obstacle (PVO) approach considering the maritime collision regulations (COLREGs). In order to demonstrate the performance of the proposed algorithm, an extensive set of simulations was conducted and the results are discussed.

반복학습제어기를 이용한 자석식 자동 파이프 절단 로봇의 제어 (Control of Automatic Pipe Cutting Robot with Magnet Binder Using Learning Controller)

  • 이성환;김국환;임성수;이순걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.541-546
    • /
    • 2005
  • Tracking control of an automatic pipe cutting robot (APCROMB) is studied. Using magnetic force APCROMB, which is designed and developed in Kyung Hee University, binds itself to the pipe and executes unmanned cutting process. The gravity effect on the movement of APCROMB varies as it rotates around the cylindrical pipe laid in the gravitational field. To maintain a constant velocity and consistent cutting performance against the varying gravitational effect, the authors adopt a multi-rate repetitive learning controller (MRLC), which learns the required effort to cancel the repetitive tracking errors caused by nonlinear effect. In addition to the varying gravity effect other types of nonlinear disturbances including backlash in the driving system and the slip between the wheels of APCROMB and the pipe also cause degradation in the cutting process. In order to identify those nonlinear disturbances the position estimation based on the encoder attached at the motor is not good enough. To identify the absolute angular position of APCROMB the authors propose the angular position estimation based on the signals from a MEMS-type two-axis accelerometer mounted on APCROMB. The tracking performances of APCROMB with a MRLC using the encoder-based position estimation is experimentally measured and results are shown. Also the difference between the encoder-based angular displacement measurement and the accelerometerbased angular displacement measurement is included.

  • PDF

평가 함수를 사용하여 회전에 강건한 자동 얼굴 영역 검출과 추적 (Automatic Face Region Detection and Tracking for Robustness in Rotation using the Estimation Function)

  • 김기상;김계영;최형일
    • 한국콘텐츠학회논문지
    • /
    • 제8권9호
    • /
    • pp.1-9
    • /
    • 2008
  • 일반적으로 얼굴 추적 시 움직임에 강건한 Lucas-Kanade 추적 방법이 많이 사용된다. 그러나 얼굴이 회전되었을 경우, 정확한 얼굴 영역 검출이 어렵다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 Lucas-Kanade 추적 방법에 평가함수를 도입하여 회전에 강건한 자동 얼굴 영역 검출 및 추적 방법을 제안하였다. 얼굴영역은 색상정보를 이용하여 자동으로 추출하였으며, Harris 코너 추출 알고리즘으로 특징점을 추출하였다. 폐색된 특징점을 구분하기위하여 특징점마다 기존 특징점과 새로운 특징점과의 차이 값을 계산한다. 만약, 특징점이 폐색되었을 경우, 잡음을 제거하기 위하여 제거하며 특징점의 개수가 일정 임계값 이하일 경우, 얼굴 영역을 다시 검출하였다. 실험결과를 통하여 얼굴 영역이 회전되었을 경우, 기존의 Lucas-Kanade 추적 방법보다 더 좋은 결과를 확인하였다.

다중시기 원격탐사 화상의 변화탐지를 위한 임계치 자동 추정 (Automatic Estimation of Threshold Values for Change Detection of Multi-temporal Remote Sensing Images)

  • 박노욱;지광훈;이광재;권병두
    • 대한원격탐사학회지
    • /
    • 제19권6호
    • /
    • pp.465-478
    • /
    • 2003
  • 이 논문은 다중시기 원격탐사 화상의 무감독 변화탐지를 위해 자동으로 임계치를 결정하는 두가지 방법을 제안하였다. 두 방법 모두 3성분 가우시안 혼합 확률 모델의 파라미터 추정과 베이지안 최소 오차 이론을 이용한 임계치 결정의 두 단계로 이루어져 있다. 첫 번째 방법은 Bruzzone and Prieto (2000)의 방법을 확장 적용한 것으로, 혼합 확률 모델의 파라미터 추정에 기대최대화 기법을 적용한다. 두 번째 제안 방법은 연속적으로 임계치 결정과 혼합 확률 모델의 파라미터 추정을 수행한다. 모의 화상과 KOMPSAT-1 EOC 화상에 적용한 결과, 제안한 두 기법 모두 효율적으로 모델 파라미터를 추정할 수 있었으며, 최소 오차를 보이는 임계치에 근사한 값을 추출할 수 있었다.

A Supervisor-Based Neural-Adaptive Shift Controller for Automatic Transmissions Considering Throttle Opening and Driving Load

  • Shin, Byung-Kwan;Hahn, Jin-Oh;Yi, Kyong-Su;Lee, Kyo-II
    • Journal of Mechanical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.418-425
    • /
    • 2000
  • Recently, many passenger cars have adopted automatic transmissions for shifting gears, and thus the smooth and precise control of gear shifts of passenger car automatic transmissions has become more and more essential for the riding comfort of vehicles equipped with automatic transmissions. In this article, a neural network-based supervisor for an automotive shift controller considering the throttle opening, variations in throttle opening, and the driving load is presented. For using the driving load information, an observer-based driving load estimation algorithm is proposed. A proportional-integral-derivative controller along with an open loop controller is used as a low level controller for controlling the gear shifts, and a supervisory controller for properly adapting the shift control parameters of the low level shift controller is designed using ANFIS. To evaluate the control performance of the proposed supervisor-based shift controller, both simulation studies and experimental studies are performed for various shifting situations.

  • PDF