• Title/Summary/Keyword: automatic detection

Search Result 1,700, Processing Time 0.033 seconds

Image Analysis Using Digital Radiographic Lumbar Spine of Patients with Osteoporosis (골다공증 환자의 Digital 방사선 요추 Image를 이용한 영상분석)

  • Park, Hyong-Hu;Lee, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.362-369
    • /
    • 2014
  • This study aimed to propose an accurate diagnostic method for osteoporosis by realizing a computer-aided diagnosis system with the application of the statistical analysis of texture features using digital images of lateral lumbar spine of patients with osteoporosis and providing reliable supplementary diagnostic information by model experimental research for early diagnosis of diseases. For these purposes, digital images of lateral lumbar spine of normal individuals and patients with osteoporosis were used in the experiments, and the values of statistical texture features on the set ROI were expressed in six parameters. Among the texture feature values of the six parameters of osteoporosis, the highest and lowest recognition rates of 95 and 80% were shown in average gray level and uniformity, respectively. Moreover, all the six parameters showed recognition rates of over 80% for osteoporosis: 82.5% in average contrast, 90% in smoothness, 87.5% in skewness, and 87.5% in entropy. Therefore, if a program developing into a computer-aided diagnosis system for medical images is coded based on the results of this study, it is considered possible to be applied to preliminary diagnostic data for automatic detection of lesions and disease diagnosis using medical images, to provide information for definite diagnosis of diseases, to diagnose by limited device, and to be used to shorten the time to analyze medical images.

Development of Android Smartphone App for Corner Point Feature Extraction using Remote Sensing Image (위성영상정보 기반 코너 포인트 객체 추출 안드로이드 스마트폰 앱 개발)

  • Kang, Sang-Goo;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • In the information communication technology, it is world-widely apparent that trend movement from internet web to smartphone app by users demand and developers environment. So it needs kinds of appropriate technological responses from geo-spatial domain regarding this trend. However, most cases in the smartphone app are the map service and location recognition service, and uses of geo-spatial contents are somewhat on the limited level or on the prototype developing stage. In this study, app for extraction of corner point features using geo-spatial imagery and their linkage to database system are developed. Corner extraction is based on Harris algorithm, and all processing modules in database server, application server, and client interface composing app are designed and implemented based on open source. Extracted corner points are applied LOD(Level of Details) process to optimize on display panel. Additional useful function is provided that geo-spatial imagery can be superimposed with the digital map in the same area. It is expected that this app can be utilized to automatic establishment of POI (Point of Interests) or point-based land change detection purposes.

Soccer Video Highlight Building Algorithm using Structural Characteristics of Broadcasted Sports Video (스포츠 중계 방송의 구조적 특성을 이용한 축구동영상 하이라이트 생성 알고리즘)

  • 김재홍;낭종호;하명환;정병희;김경수
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.727-743
    • /
    • 2003
  • This paper proposes an automatic highlight building algorithm for soccer video by using the structural characteristics of broadcasted sports video that an interesting (or important) event (such as goal or foul) in sports video has a continuous replay shot surrounded by gradual shot change effect like wipe. This shot editing rule is used in this paper to analyze the structure of broadcated soccer video and extracts shot involving the important events to build a highlight. It first uses the spatial-temporal image of video to detect wipe transition effects and zoom out/in shot changes. They are used to detect the replay shot. However, using spatial-temporal image alone to detect the wipe transition effect requires too much computational resources and need to change algorithm if the wipe pattern is changed. For solving these problems, a two-pass detection algorithm and a pixel sub-sampling technique are proposed in this paper. Furthermore, to detect the zoom out/in shot change and replay shots more precisely, the green-area-ratio and the motion energy are also computed in the proposed scheme. Finally, highlight shots composed of event and player shot are extracted by using these pre-detected replay shot and zoom out/in shot change point. Proposed algorithm will be useful for web services or broadcasting services requiring abstracted soccer video.

A Prostate Segmentation of TRUS Image using Average Shape Model and SIFT Features (평균 형상 모델과 SIFT 특징을 이용한 TRUS 영상의 전립선 분할)

  • Kim, Sang Bok;Seo, Yeong Geon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.3
    • /
    • pp.187-194
    • /
    • 2012
  • Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease, transrectal ultrasound(TRUS) images are being used because the cost is low. But, accurate detection of prostate boundaries is a challenging and difficult task due to weak prostate boundaries, speckle noises and the short range of gray levels. This paper proposes a method for automatic prostate segmentation in TRUS images using its average shape model and invariant features. This approach consists of 4 steps. First, it detects the probe position and the two straight lines connected to the probe using edge distribution. Next, it acquires 3 prostate patches which are in the middle of average model. The patches will be used to compare the features of prostate and nonprostate. Next, it compares and classifies which blocks are similar to 3 representative patches. Last, the boundaries from prior classification and the rough boundaries from first step are used to determine the segmentation. A number of experiments are conducted to validate this method and results showed that this new approach extracted the prostate boundary with less than 7.78% relative to boundary provided manually by experts.

APPLICATION OF HF COASTAL OCEAN RADAR TO TSUNAMI OBSERVATIONS

  • Heron, Mal;Prytz, Arnstein;Heron, Scott;Helzel, Thomas;Schlick, Thomas;Greenslade, Diana;Schulz, Eric
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.34-37
    • /
    • 2006
  • When tsunami waves propagate across open ocean they are steered by Coriolis force and refraction due to gentle gradients in the bathymetry on scales longer than the wavelength. When the wave encounters steep gradients at the edges of continental shelves and at the coast, the wave becomes non-linear and conservation of momentum produces squirts of surface current at the head of submerged canyons and in coastal bays. HF coastal ocean radar is well-conditioned to observe the current bursts at the edge of the continental shelf and give a warning of 40 minutes to 2 hours when the shelf is 50-200km wide. The period of tsunami waves is invariant over changes in bathymetry and is in the range 2-30 minutes. Wavelengths for tsunamis (in 500-3000 m depth) are in the range 8.5 to over 200 km and on a shelf where the depth is about 50 m (as in the Great Barrier Reef) the wavelengths are in the range 2.5 - 30 km. It is shown that the phased array HF ocean surface radar being deployed in the Great Barrier Reef (GBR) and operating in a routine way for mapping surface currents, can resolve surface current squirts from tsunamis in the wave period range 20-30 minutes and in the wavelength range greater than about 6 km. There is a trade-off between resolution of surface current speed and time resolution. If the radar is actively managed with automatic intervention during a tsunami alert period (triggered from the global seismic network) then it is estimated that the time resolution of the GBR radar may be reduced to about 2 minutes, which corresponds to a capability to detect tsunamis at the shelf edge in the period range 5-30 minutes. It is estimated that the lower limit of squirt velocity detection at the shelf edge would correspond to a tsunami with water elevation of less than 5 cm in the open ocean. This means that the GBR HF radar is well-conditioned for use as a monitor of small and medium scale tsunamis, and has the potential to contribute to the understanding of tsunami genesis research.

  • PDF

Analysis of Land Surface Temperature from MODIS and Landsat Satellites using by AWS Temperature in Capital Area (수도권 AWS 기온을 이용한 MODIS, Landsat 위성의 지표면 온도 분석)

  • Jee, Joon-Bum;Lee, Kyu-Tae;Choi, Young-Jean
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.315-329
    • /
    • 2014
  • In order to analyze the Land Surface Temperature (LST) in metropolitan area including Seoul, Landsat and MODIS land surface temperature, Automatic Weather Station (AWS) temperature, digital elevation model and landuse are used. Analysis method among the Landsat and MODIS LST and AWS temperature is basic statistics using by correlation coefficient, root-mean-square error and linear regression etc. Statistics of Landsat and MODIS LST are a correlation coefficient of 0.32 and Root Mean Squared Error (RMSE) of 4.61 K, respectively. And statistics of Landsat and MODIS LST and AWS temperature have the correlations of 0.83 and 0.96 and the RMSE of 3.28 K and 2.25 K, respectively. Landsat and MODIS LST have relatively high correlation with AWS temperature, and the slope of the linear regression function have 0.45 (Landsat) and 1.02 (MODIS), respectively. Especially, Landsat 5 has lower correlation about 0.5 or less in entire station, but Landsat 8 have a higher correlation of 0.5 or more despite of lower match point than other satellites. Landsat 7 have highly correlation of more than 0.8 in the center of Seoul. Correlation between satellite LSTs and AWS temperature with landuse (urban and rural) have 0.8 or higher. Landsat LST have correlation of 0.84 and RMSE of more than 3.1 K, while MODIS LST have correlation of more than 0.96 and RMSE of 2.6 K. Consequently, the difference between the LSTs by two satellites have due to the difference in the optical observation and detection the radiation generated by the difference in the area resolution.

Urban Area Building Reconstruction Using High Resolution SAR Image (고해상도 SAR 영상을 이용한 도심지 건물 재구성)

  • Kang, Ah-Reum;Lee, Seung-Kuk;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.361-373
    • /
    • 2013
  • The monitoring of urban area, target detection and building reconstruction have been actively studied and investigated since high resolution X-band SAR images could be acquired by airborne and/or satellite SAR systems. This paper describes an efficient approach to reconstruct artificial structures (e.g. apartment, building and house) in urban area using high resolution X-band SAR images. Building footprint was first extracted from 1:25,000 digital topographic map and then a corner line of building was detected by an automatic detecting algorithm. With SAR amplitude images, an initial building height was calculated by the length of layover estimated using KS-test (Kolmogorov-Smirnov test) from the corner line. The interferometric SAR phases were simulated depending on SAR geometry and changable building heights ranging from -10 m to +10 m of the initial building height. With an interferogram from real SAR data set, the simulation results were compared using the method of the phase consistency. One of results can be finally defined as the reconstructed building height. The developed algorithm was applied to repeat-pass TerraSAR-X spotlight mode data set over an apartment complex in Daejeon city, Korea. The final building heights were validated against reference heights extracted from LiDAR DSM, with an RMSE (Root Mean Square Error) of about 1~2m.

Distance Measurement of Small Moving Object using Infrared Stereo Camera (적외선 스테레오 카메라를 이용한 소형 이동체의 거리 측정)

  • Oh, Jun-Ho;Lee, Sang-Hwa;Lee, Boo-Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.53-61
    • /
    • 2012
  • This paper proposes a real-time distance measurement system of high temperature and high speed target using infrared stereo camera. We construct an infrared stereo camera system that measure the difference between target and background temperatures for automatic target measurement. First, the proposed method detects target region based on target motion and intensity variation of local region using difference between target and background temperatures. Second, stereo matching by left and right target information is used to estimate disparity about real-time distance of target. In the proposed method using infrared stereo camera system, we compare distances in three dimension trajectory measuring instrument and in infrared stereo camera measurement. In this experiment from three video data, the result shows an average 9.68% distance error rate. The proposed method is suitable for distance and position measurement of varied targets using infrared stereo system.

A study on measurement and compensation of automobile door gap using optical triangulation algorithm (광 삼각법 측정 알고리즘을 이용한 자동차 도어 간격 측정 및 보정에 관한 연구)

  • Kang, Dong-Sung;Lee, Jeong-woo;Ko, Kang-Ho;Kim, Tae-Min;Park, Kyu-Bag;Park, Jung Rae;Kim, Ji-Hun;Choi, Doo-Sun;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • In general, auto parts production assembly line is assembled and produced by automatic mounting by an automated robot. In such a production site, quality problems such as misalignment of parts (doors, trunks, roofs, etc.) to be assembled with the vehicle body or collision between assembly robots and components are often caused. In order to solve such a problem, the quality of parts is manually inspected by using mechanical jig devices outside the automated production line. Automotive inspection technology is the most commonly used field of vision, which includes surface inspection such as mounting hole spacing and defect detection, body panel dents and bends. It is used for guiding, providing location information to the robot controller to adjust the robot's path to improve process productivity and manufacturing flexibility. The most difficult weighing and measuring technology is to calibrate the surface analysis and position and characteristics between parts by storing images of the part to be measured that enters the camera's field of view mounted on the side or top of the part. The problem of the machine vision device applied to the automobile production line is that the lighting conditions inside the factory are severely changed due to various weather changes such as morning-evening, rainy days and sunny days through the exterior window of the assembly production plant. In addition, since the material of the vehicle body parts is a steel sheet, the reflection of light is very severe, which causes a problem in that the quality of the captured image is greatly changed even with a small light change. In this study, the distance between the car body and the door part and the door are acquired by the measuring device combining the laser slit light source and the LED pattern light source. The result is transferred to the joint robot for assembling parts at the optimum position between parts, and the assembly is done at the optimal position by changing the angle and step.

A Feasibility Study on Application of a Deep Convolutional Neural Network for Automatic Rock Type Classification (자동 암종 분류를 위한 딥러닝 영상처리 기법의 적용성 검토 연구)

  • Pham, Chuyen;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.462-472
    • /
    • 2020
  • Rock classification is fundamental discipline of exploring geological and geotechnical features in a site, which, however, may not be easy works because of high diversity of rock shape and color according to its origin, geological history and so on. With the great success of convolutional neural networks (CNN) in many different image-based classification tasks, there has been increasing interest in taking advantage of CNN to classify geological material. In this study, a feasibility of the deep CNN is investigated for automatically and accurately identifying rock types, focusing on the condition of various shapes and colors even in the same rock type. It can be further developed to a mobile application for assisting geologist in classifying rocks in fieldwork. The structure of CNN model used in this study is based on a deep residual neural network (ResNet), which is an ultra-deep CNN using in object detection and classification. The proposed CNN was trained on 10 typical rock types with an overall accuracy of 84% on the test set. The result demonstrates that the proposed approach is not only able to classify rock type using images, but also represents an improvement as taking highly diverse rock image dataset as input.