Research in detecting fake information gained a lot of interest after the US presidential election in 2016. Information from unknown sources are produced in the shape of news, and its rapid spread is fueled by the interest of public drawn to stimulating and interesting issues. In addition, the wide use of mass communication platforms such as social network services makes this phenomenon worse. Poynter Institute created the International Fact Checking Network (IFCN) to provide guidelines for judging the facts of skilled professionals and releasing "Code of Ethics" for fact check agencies. However, this type of approach is costly because of the large number of experts required to test authenticity of each article. Therefore, research in automated fake news detection technology that can efficiently identify it is gaining more attention. In this paper, we investigate fake news detection systems and researches that are rapidly developing, mainly thanks to recent advances in deep learning technology. In addition, we also organize shared tasks and training corpus that are released in various forms, so that researchers can easily participate in this field, which deserves a lot of research effort.
Kim, Seoung-Yeal;Kim, Whee-Moon;Song, Won-Kyong;Choi, Young-Eun;Choi, Jae-Yong;Moon, Guen-Soo
Journal of the Korean Society of Environmental Restoration Technology
/
v.22
no.5
/
pp.1-12
/
2019
It is important to measure the height of trees as an essential element for assessing the forest health in urban areas. Therefore, an automated method that can measure the height of individual tree as a three-dimensional forest information is needed in an extensive and dense forest. Since airborne LiDAR dataset is easy to analyze the tree height(z-coordinate) of forests, studies on individual tree height measurement could be performed as an assessment forest health. Especially in urban forests, that adversely affected by habitat fragmentation and isolation. So this study was analyzed to measure the height of individual trees for assessing the urban forests health, Furthermore to identify environmental factors that affect forest growth. The survey was conducted in the Mt. Bongseo located in Seobuk-gu. Cheonan-si(Middle Chungcheong Province). We segment the individual trees on coniferous by automatic method using the airborne LiDAR dataset of the two periods (year of 2016 and 2017) and to find out individual tree growth. Segmentation of individual trees was performed by using the watershed algorithm and the local maximum, and the tree growth was determined by the difference of the tree height according to the two periods. After we clarify the relationship between the environmental factors affecting the tree growth. The tree growth of Mt. Bongseo was about 20cm for a year, and it was analyzed to be lower than 23.9cm/year of the growth of the dominant species, Pinus rigida. This may have an adverse effect on the growth of isolated urban forests. It also determined different trees growth according to age, diameter and density class in the stock map, effective soil depth and drainage grade in the soil map. There was a statistically significant positive correlation between the distance to the road and the solar radiation as an environmental factor affecting the tree growth. Since there is less correlation, it is necessary to determine other influencing factors affecting tree growth in urban forests besides anthropogenic influences. This study is the first data for the analysis of segmentation and the growth of the individual tree, and it can be used as a scientific data of the urban forest health assessment and management.
The contemporary practices of Big-Data based automated decision making algorithms are widely deployed not just because we expect algorithmic decision making might distribute social resources in a more efficient way but also because we hope algorithms might make fairer decisions than the ones humans make with their prejudice, bias, and arbitrary judgment. However, there are increasingly more claims that algorithmic decision making does not do justice to those who are affected by the outcome. These unfair examples bring about new important questions such as how decision making was translated into processes and which factors should be considered to constitute to fair decision making. This paper attempts to delve into a bunch of research which addressed three areas of algorithmic application: criminal justice, law enforcement, and national security. By doing so, it will address some questions about whether artificial intelligence algorithm discriminates certain groups of humans and what are the criteria of a fair decision making process. Prior to the review, factors in each stage of data mining that could, either deliberately or unintentionally, lead to discriminatory results will be discussed. This paper will conclude with implications of this theoretical and practical analysis for the contemporary Korean society.
This study proposes the design and implementation of a low-cost emergency ventilator which can be helpful during the COVID-19 pandemic where the supply of automatic ventilators is not smooth compared with the urgent demand worldwide. Easy implementation and lower price were made possible by using AMBU-bag and off-the-shelf embedded micro-controller board. Moreover, while 3D printing is used by companies and experts around the world to build prototype hardware, materials which are readily available from surrounding environments so that people in countries where it is difficult to access many advanced technologies could manufacture the system. The design features AMBU-bag automation, not use 3D printing, and it can contrl speed. By allowing speed control, ventilation can be performed according to the conditions of the patient being used. A complementary point in the study is that it is difficult to fix the start point of the wiper motor used first. A method for complementing this is a method for replacing the brush DC motor with a position feedback function. Secondly, the AMBU-bag may wear out in the long-term process of compressing the AMBU-bag because the arm and the fixing frame are made of wood. To complement this, the part of fixing frame and arm parts that the AMBU-bag touches need to be wrapped in a material such as silicon to minimize friction.
Journal of The Korean Association For Science Education
/
v.42
no.5
/
pp.501-514
/
2022
This study aims to reveal what is necessary for pre-service science teachers to make good use of online formative assessment in the context of online classes. For 22 pre-service physics teachers, first, the preliminary perception of online classes, online formative assessment, and formative assessment was investigated; second, the practice process of online formative assessment was examined. Then the differences between perception and practice were compared and analyzed. Data were collected in preliminary surveys, lesson plans, online formative assessment items, and interview data. As a result of the study, an interaction was mentioned as the difficulty of online classes in the preliminary perception, and pre-service teachers mentioned the use of technology, feedback, and adjustment as advantages of online formative assessment. In most cases of practice, the automated feedback was used using the platform's technology, but it did not lead to adjustment and interaction. In addition, the use of items in online formative assessment was not suitable for formative functions. The reason why the interaction using formative feedback did not occur seems to be because the understanding of formative assessment was insufficient. Pre-service teachers need to be prepared for the 'formative' function through the feedback of online formative assessment so that can lead to interaction in online classes. The shift to online classes is creating difficulties, especially in interaction. It is necessary to prepare and educate pre-service teachers on fundamental aspects that can overcome these difficulties.
Jung-Youl Choi;Jae-Min Han;Dae-Hui Ahn;Jee-Seung Chung;Jung-Ho Kim;Sung-Jin Lee
The Journal of the Convergence on Culture Technology
/
v.9
no.1
/
pp.685-690
/
2023
It was analyzed that the volume of deep excavation works adjacent to existing underground structures is increasing according to the population growth and density of cities. Currently, many underground structures and tracks are damaged by external factors, and the cause is analyzed based on the measurement results in the tunnel, and measurements are being made for post-processing, not for prevention. The purpose of this study is to analyze the effect on the deformation of the structure due to the excavation work adjacent to the urban railway track in use. In addition, the safety of structures is evaluated through machine learning techniques for displacement of structures before damage and destruction of underground structures and tracks due to external factors. As a result of the analysis, it was analyzed that the model suitable for predicting the structure management standard value time in the analyzed dataset was a polynomial regression machine. Since it may be limited to the data applied in this study, future research is needed to increase the diversity of structural conditions and the amount of data.
Todays, medium energy resolution detectors are preferably used in radioisotope identification devices(RID) in nuclear and radioactive material categorization. However, there is still a need to develop or enhance « automated identifiers » for the useful RID algorithms. To decide whether any material is SNM or NORM, a key parameter is the better energy resolution of the detector. Although masking, shielding and gain shift/stabilization and other affecting parameters on site are also important for successful operations, the suitability of the RID algorithm is also a critical point to enhance the identification reliability while extracting the features from the spectral analysis. In this study, a RID algorithm based on Bayesian statistical method has been modified for medium energy resolution detectors and applied to the uranium gamma-ray spectra taken by a LaBr3:Ce detector. The present Bayesian RID algorithm covers up to 2000 keV energy range. It uses the peak centroids, the peak areas from the measured gamma-ray spectra. The extraction features are derived from the peak-based Bayesian classifiers to estimate a posterior probability for each isotope in the ANSI library. The program operations were tested under a MATLAB platform. The present peak based Bayesian RID algorithm was validated by using single isotopes(241Am, 57Co, 137Cs, 54Mn, 60Co), and then applied to five standard nuclear materials(0.32-4.51% at.235U), as well as natural U- and Th-ores. The ID performance of the RID algorithm was quantified in terms of F-score for each isotope. The posterior probability is calculated to be 54.5-74.4% for 238U and 4.7-10.5% for 235U in EC-NRM171 uranium materials. For the case of the more complex gamma-ray spectra from CRMs, the total scoring (ST) method was preferred for its ID performance evaluation. It was shown that the present peak based Bayesian RID algorithm can be applied to identify 235U and 238U isotopes in LEU or natural U-Th samples if a medium energy resolution detector is was in the measurements.
Yoonmi Kim;Ho Seon Kim;Kyeong-Pyo Kang;Seoung Bum Kim
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.22
no.5
/
pp.224-239
/
2023
C-ITS (Cooperative-Intelligent Transportation System) refers to user safety-oriented technology and systems that provide forward traffic situation information based on a two-way wireless communication technology between vehicles or between vehicles and infrastructure. Since the Daejeon-Sejong pilot project in 2016, the C-ITS infrastructure has been installed at various locations to provide C-ITS safety services through highway and local government demonstration projects. In this study, a methodology was developed to verify the effectiveness of the warning information using individual vehicle data collected through the Gwangju Metropolitan City C-ITS demonstration project. The analysis of the effectiveness was largely divided into driving behavior impact analysis and environmental analysis. Compliance analysis and driving safety evaluation were performed for the driving impact analysis. In addition, to supplement the inadequate collection of Probe Vehicle Data (PVD) collected during the C-ITS demonstration project, Digital Tacho Graph ( DTG ) data was additionally collected and used for effect analysis. The results of the compliance analysis showed that drivers displayed reduced driving behavior in response to warning information based on a sufficient number of valid samples. Also, the results of calculating and analyzing driving safety indicators, such as jerk and acceleration noise, revealed that driving safety was improved due to the provision of warning information.
Journal of the Korean Association of Geographic Information Studies
/
v.27
no.1
/
pp.29-40
/
2024
Recently, the technology of autonomous driving, one of the core of the fourth industrial revolution, is developing, but sensor-based autonomous driving is showing limitations, such as accidents in unexpected situations, To compensate for this, HD-map is being used as a core infrastructure for autonomous driving, and interest in the public and private sectors is increasing, and various studies and technology developments are being conducted to secure the latest and accuracy of HD-map. Currently, NGII will be newly built in urban areas and major roads across the country, including the metropolitan area, where self-driving cars are expected to run, and is working to minimize data error rates through quality verification. Therefore, this study analyzes the spatial relationship of reference objects in the attribute structuring process for rapid and accurate renewal and production of HD-map under construction by NGII, By applying the attribute input automation methodology of the reference object in which spatial relations are established using the library of open source-based PyQGIS, target sites were selected for each road type, such as high-speed national highways, general national highways, and C-ITS demonstration sections. Using the attribute automation tool developed in this study, it took about 2 to 5 minutes for each target location to automatically input the attributes of the spatial relationship reference object, As a result of automation of attribute input for reference objects, attribute input accuracy of 86.4% for high-speed national highways, 79.7% for general national highways, 82.4% for C-ITS, and 82.8% on average were secured.
Journal of the Institute of Convergence Signal Processing
/
v.24
no.4
/
pp.236-241
/
2023
Water quality problems in rivers, lakes, and estuaries have become serious in Korea. In order to overcome eutrophication of freshwater lakes and river basins, systematic management of water quality is necessary. To manage water quality in freshwater lakes and basins, apply hydrological models suitable for the basin and water quality models such as rivers and lakes to reduce water pollution based on the prediction results of these models. Improvement measures must be presented. In order to apply appropriate water pollution improvement measures in the watershed, accurate pollution sources must be identified and pollution loads must be predicted and presented. Based on GIS, the connection between the pollutant database and the hydrological and water quality prediction model will be integrated based on spatial location, making it possible to provide systematic support to improve watershed water quality by comprehensively including the water quality modeling process. In this paper, in order to accurately predict water pollution in freshwater lakes and river basins, a water quality model system is established using GIS-based spatial information to present a comprehensive water quality management method for freshwater lake basins in the future, and to systematically manage pollution sources through water quality modeling. This study was conducted to easily and efficiently operate hydrological and water quality models using automated spatial information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.