• Title/Summary/Keyword: autogenous expansion

Search Result 35, Processing Time 0.022 seconds

Analysis of Autogenous Shrinkage Properties of High Strength Mortar in Relation to the Time and Rate of Mixing ERBO (ERBO 혼입율 및 혼입시기 변화에 따른 고강도 모르타르의 자기수축 특성분석)

  • Kim, Tae-Woo;Beak, Cheol;Hyun, Seong-Yong;Lee, Jea-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.180-181
    • /
    • 2017
  • This study aims to analyze the high strength mortar's fundamental properties and autogenous shrinkage properties by taking into consideration the result of the previous study in which it was found that ERBO(Biodiesel) exercises greatest effect on the expansion effect of mortar, and changing the time and rate of mixing the ERBO. A total of five levels were set as experimental variables: the three levels of the rate of ERBO, 0, 0.5, 1.0%, and the two levels of the time of mixing the ERBO: first, adding the ERBO with the mixing water and mixing it before, and second, mixing it after the mortar is completely mixed. It was found that the rate of length change decreased as the rate of ERBO increased, and the rate of length change was lower when the ERBO was mixed sooner.

  • PDF

Expansion Model of Cement Paste using Expansive Additive (팽창재를 혼입한 시멘트 경화체의 팽창모델)

  • Park, Sun-Gyu;Takahumi, Noguchi;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.789-792
    • /
    • 2005
  • Development of high-strength concrete and improved durability has brought new opportunities to the construction industry. However, some attention was given to characteristics of such concrete, in particular with respect to their cracking sensitivity. It has been argued and demonstrated experimentally that a low water/cement ratio concrete undergoes shrinkage due to self-desiccation. This so-called autogenous shrinkage cracking is a major concern for concrete durability. One possible method to reduce cracking due to autogenous shrinkage is the addition of expansive additive. Tests conducted by many researches have shown the beneficial effects of addition of expansive for reducing the risk of shrinkage-introduced cracking. This paper aimed at forecasting deformation of high strength cement paste with expansive additive for early age.

  • PDF

Hydration Model of Ettringite-Gypsum Type Expansive Additive (에트링가이트-석회 복합계 팽창재의 수화반응 모델화)

  • Park Sun Gyu;Noguchi Takahumi;Song Ha Won;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.683-686
    • /
    • 2004
  • In recent years, some attention was particularly given to cracking sensitivity of high performance concrete. It has been argued and demonstrated experimentally that such concrete undergoes autogenous shrinkage due to self-desiccation at early age, and, as a result, internal tensile stress may develop, leading to micro cracking and macro cracking. One possible method to reduce cracking due to autogenous shrinkage is the addition of expansive additive. Tests conducted by many researches have shown the beneficial effects of addition of expansive additive for reducing the risk of shrinkage-introduced cracking. However, the research on hydration model of expansion additive has been hardly researched up to now. This paper presents a study of the hydration model of Ettringite-Gypsum type expansive additive. Result of comparing forecast values with experiment value, proposed model is shown to expressible of hydration of expansive additive.

  • PDF

Influence of Water-Binder Ratio and Expansion Admixture on Mechanical Properties of Strain-Hardening Cement-Based Composite with Hybrid Steel and Polyethylene Fibers (강섬유와 폴리에틸렌 섬유를 함께 혼입한 SHCC의 물결합재비와 팽창재 치환유무에 따른 역학적 특성)

  • Kim, Sung-Ho;Lee, Young-Oh;Kim, Hee-Jong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.233-240
    • /
    • 2012
  • Hybrid SHCC is being researched actively for its excellent performance in controlling macro and micro cracks using macro and micro fibers, respectively. However, a significant autogenous shrinkage of SHCC is expected since it possesses high unit cement volume in its mix proportion, resulting in autogenous shrinkage cracks. Therefore, this study was performed to evaluate mechanical property of shrinkage-reducing type hybrid SHCC mixed together with steel fiber and PE fiber with excellent micro/macro crack controlling performance. In order to evaluate mechanical property of shrinkage-reducing type hybrid SHCC, replacement ratios of 0% and 10% of expansive admixture and water to binder ratios of 0.45, 0.3, and 0.2 were considered as variables. Then, shrinkage, compressive, flexural, and direct tensile tests were performed. The test results showed that mix proportion with W/B 0.3 significantly improved mechanical performance by using 10% replacement of expansive admixture.

Autogenous Shrinkage and Engineering Properties of the High Strength Concrete Using Soybean and Waste Edible Oil (식물성 유지 및 폐식용유를 사용한 고강도 콘크리트의 자기수축 및 공학적 특성)

  • Han, Min-Cheol;Lee, Dong-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.110-117
    • /
    • 2011
  • This study investigated possibilities for a new reducing shrinkage method of soybean oil(SO) and waste oil(WO) to compare with shrinkage reducing agent(RS) and expansion additive(EA). There was no big difference to flow, air contents, and compressive strength of plain to use SO and WO. For the reducing shrinkage performance, SO and WO was more effective than RS and EA, because their fatty acid reacted with calcium hydroxide of concrete to turn soap. For the pore distribution by porosimter, $0.01{\sim}0.1{\mu}m$ pores of SO and WO were 0 ml/g, and $10{\sim}100{\mu}m$ also remarkably lower than any others. In these results, it inferred that they filled up capillary pore and mitigated autogenous shrinkage by their saponification of their fatty acid and calcium hydroxide.

  • PDF

Analysis on Shrinkage Properties of High Performance Concrete According to Mock-Up Test (고성능 콘크리트의 Mock-Up 시험에 의한 수축특성 분석)

  • Koh Kyoung Taek;Jin Hu Lin;Ryu Gum Sung;Hwang Yin Seong;Kim Do Gyum;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.545-548
    • /
    • 2004
  • This paper is to investigate the shrinkage properties of high performance concrete (HPC) with mixture adjustment by using mock-up specimens. HPC with mixture adjustment needed a higher dosage of SP agent due to fluidity reduction and a larger dosage of AE agent due to the reduction of air content. Setting time of HPC with mixture adjustment exhibited earlier than that of control HPC by as much as 6 hours. HPC with mixture adjustment gained more than 70MPa of compressive strength. Autogenous shrinkage of Control HPC was found to be $-340\times40^{-6}$ at 49days when the expansion value by thermal effect was excluded and HPC with mixture adjustment $-175\times10^{-6}$, which was the half of the value of control HPC. Drying shrinkage of center section of HPC with mixture adjustment showed similar tendency with autogenous shrinkage because of no internal moisture movement, while surface section had larger drying shrinkage. The specimen embedded with reinforcing bar had smaller deformation caused by confinement of reinforcing bar.

  • PDF

Property of tow Shrinkage High Performance Concrete depending on Mixture Proportions and Material Characteristics (배합 및 재료요인에 따른 저수축 고성능 콘크리트의 품질 특성)

  • Han Cheon-Goo;Kim Sung-Wook;Koh Kyoung-Taek;Han Mu-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.805-811
    • /
    • 2004
  • In this paper, effects of mixture proportion and material condition on both fundamental properties, drying and autogenous shrinkage of high performance concrete are discussed. According to the results, for the effect of mixture proportion on the fundamental properties, decrease in W/B and unit water content results in reduction of fluidity, while air content has no variation. Compressive strength exhibits an decreasing tendency with an increase in W/B and unit water content do not remarkable affect the compressive strength. For the effect of materials on the fluidity, the fluidity of low heat portland cement(LPC) is smaller than that of ordinary portland cement(OPC). The use of Polycarbonic acid based superplasticizer(PS) has more favorable effect on enhancing fluidity than Naphtalene based superplasticlzer(NS) and Melamine based superplasticizer(MS). Air content of concrete using LPC is larger than that using OPC. The effects of superplasticizer type on the air content is larger in order of MS, PS and NS. The use of LPC exhibited lower strength development at early age than OPC, whereas after 91days, similar level of compressive strength is achieved regardless of cement type. Compressive strength of concrete is not affected by SP type. For the effect of mixture proportion and materials on drying and autogenous shrinkage, an increase in W/B results in reduction of drying shrinkage and an decrease in water content leads to reduce drying shrinkage. Autogenous shrinkage is not observed until 49 days with the concrete mixture with $35\%$ of W/B and $145 kg/m^3$ of water content. This is due to the combination effects of expansion admixture and shrinkage reducing admixture, which causes an offset of autogenous shrinkage. The use of LPC results in a reduction in autogenous shrinkage compared with OPC. SP type has little influence on the autogenous shrinkage. It is found from the results that mixture proportioning of high performance concrete incorporating fly ash, silica fume, expansion admixture and shrinkage reducing admixture is need to focus on the increase in W/B and the reduction in water content and the use of LPC and MS is also required to use to secure the stability against shrinkage properties.

A Study on the Hydration Reaction Model of Expansive Additive of Ettringite-Gypsum Type (에트링가이트-석탄 복합계 팽장재의 수화반응 모델에 관한 연구)

  • Park Sun Gyu;Takahumi Noguchi;Kim Moo-Han
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.581-586
    • /
    • 2005
  • High-performance concrete (HPC), which is particularly sensitive to self-desiccation, is required to be durable even in severe environmental conditions, i.e. costal area, cold district, etc. However, in recent years, some attention was particularly given to cracking sensitivity of high performance concrete at early age. It has been argued and demonstrated experimentally that such concrete undergoes autogenous shrinkage due to self-desiccation at early age under restrained condition, nd, as a result, internal tensile stress may develop, leading to micro cracking and macro cracking. This shrinkage-introduced crack produces a major serviceability problem for concrete structures. One possible method to reduce cracking due to autogenous shrinkage is the addition of expansive additive. Tests conducted by many researches have shown the beneficial effects of addition of expansive additive for reducing the risk of autogenous shrinkage-introduced cracking. However, the research on hydration model of expansion additive has been hardly researched up to now. This paper presents a study of the hydration model of Ettringite-Gypsum type expansive additive. As a result of comparing forecast values with experiment value, proposed model is shown to expressible of hydration of expansive additive.

Experimental Study on Tension-Hardening and Softening Characteristics in Reinforced Mortar with CSA Expansion Agent (CSA 팽창재를 혼입한 철근보강 모르타르의 인장 경화-연화 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Ahn, Jung-Kil;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • Expansion agent is a very effective admixture for prevention of cracking due to autogenous/drying shrinkage and this can induce internal chemical prestress to embedded reinforcement. In this paper, tension-softening and hardening in cement mortar with steel and CSA expansion agent are experimentally evaluated. Cement mortar with steel reinforcement is prepared and tensile strength test is performed for evaluation of cracking and tensile behavior. In spite of slightly reduced strength and elasticity in CSA mortar, significantly increased tension-hardening behavior is evaluated in CSA mortar with induced chemical prestress. Furthermore previous tension softening models are compared with the test results and improvement are proposed.

Immediate Breast Reconstruction Placing the Breast Implant under the Pectoralis Major-Serratus Anterior Pocket without Tissue Expansion (조직확장술을 거치지 않고 유방보형물을 대흉근-전거근 포켓에 삽입한 즉시 유방재건술)

  • Kim, Hoon;Eom, Jin Sub;Ahn, Sei Hyun;Son, Byung Ho;Lee, Taik Jong
    • Archives of Plastic Surgery
    • /
    • v.34 no.5
    • /
    • pp.622-627
    • /
    • 2007
  • Purpose: Although the autogenous tissue transfer has been the mainstay of the breast reconstruction, concern for the donor site morbidity can lead to the superseded method using tissue expander with implant or permanent expander-implant. However, the additional procedure of tissue expansion possibly cause discomfort and raise the cost. We tried to verify the efficacy of using the saline-filled breast implant by itself for the safe and convenient immediate breast reconstruction modality if the patients have small, round and non-ptotic breasts and the sufficient breast skin can be saved with mastectomy. Methods: From July 2002 to July 2005, 29 breasts of 26 patients were restored only with the saline-filled breast implant immediately after the skin sparing or nipple-areolar skin sparing mastectomy in Asan Medical Center. A pocket with pectoralis major and serratus anterior muscle was created and the implant was covered with this muscle pocket. Simultaneous contralateral augmentation was performed in patients whose mastectomy specimen weighed less than 100g. Results: Using only the saline-filled breast implant resulted in the successful reconstruction with few complications including partial necrosis of nipple areolar skin (five cases, 17.2%), capsular contracture (three cases, 10.3%), hematoma (one case, 3.4%), depigmentation of areolar skin (one case, 3.4%), hypertrophic scar (one case, 3.4%), which were all healed by conservative management. There were no significant complications such as implant exposure and subsequent removal. Conclusion: Immediate breast reconstruction only with the saline-filled breast implant can be a satisfactory alternative option for the patients whose breast is small, round and non-ptotic, especially when the nipple-areolar skin of the breast is preserved in the mastectomy.