• Title/Summary/Keyword: autoencoder

Search Result 198, Processing Time 0.027 seconds

Audio signal clustering and separation using a stacked autoencoder (복층 자기부호화기를 이용한 음향 신호 군집화 및 분리)

  • Jang, Gil-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.303-309
    • /
    • 2016
  • This paper proposes a novel approach to the problem of audio signal clustering using a stacked autoencoder. The proposed stacked autoencoder learns an efficient representation for the input signal, enables clustering constituent signals with similar characteristics, and therefore the original sources can be separated based on the clustering results. STFT (Short-Time Fourier Transform) is performed to extract time-frequency spectrum, and rectangular windows at all the possible locations are used as input values to the autoencoder. The outputs at the middle, encoding layer, are used to cluster the rectangular windows and the original sources are separated by the Wiener filters derived from the clustering results. Source separation experiments were carried out in comparison to the conventional NMF (Non-negative Matrix Factorization), and the estimated sources by the proposed method well represent the characteristics of the orignal sources as shown in the time-frequency representation.

Damage Localization of Bridges with Variational Autoencoder (Variational Autoencoder를 이용한 교량 손상 위치 추정방법)

  • Lee, Kanghyeok;Chung, Minwoong;Jeon, Chanwoong;Shin, Do Hyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.233-238
    • /
    • 2020
  • Most deep learning (DL) approaches for bridge damage localization based on a structural health monitoring system commonly use supervised learning-based DL models. The supervised learning-based DL model requires the response data obtained from sensors on the bridge and also the label which indicates the damaged state of the bridge. However, it is impractical to accurately obtain the label data in fields, thus, the supervised learning-based DL model has a limitation in that it is not easily applicable in practice. On the other hand, an unsupervised learning-based DL model has the merit of being able to train without label data. Considering this advantage, this study aims to propose and theoretically validate a damage localization approach for bridges using a variational autoencoder, a representative unsupervised learning-based DL network: as a result, this study indicated the feasibility of VAE for damage localization.

A Method for Field Based Grey Box Fuzzing with Variational Autoencoder (Variational Autoencoder를 활용한 필드 기반 그레이 박스 퍼징 방법)

  • Lee, Su-rim;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1463-1474
    • /
    • 2018
  • Fuzzing is one of the software testing techniques that find security flaws by inputting invalid values or arbitrary values into the program and various methods have been suggested to increase the efficiency of such fuzzing. In this paper, focusing on the existence of field with high relevance to coverage and software crash, we propose a new method for intensively fuzzing corresponding field part while performing field based fuzzing. In this case, we use a deep learning model called Variational Autoencoder(VAE) to learn the statistical characteristic of input values measured in high coverage and it showed that the coverage of the regenerated files are uniformly higher than that of simple variation. It also showed that new crash could be found by learning the statistical characteristic of the files in which the crash occurred and applying the dropout during the regeneration. Experimental results showed that the coverage is about 10% higher than the files in the queue of the AFL fuzzing tool and in the Hwpviewer binary, we found two new crashes using two crashes that found at the initial fuzzing phase.

An Anomalous Sequence Detection Method Based on An Extended LSTM Autoencoder (확장된 LSTM 오토인코더 기반 이상 시퀀스 탐지 기법)

  • Lee, Jooyeon;Lee, Ki Yong
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.1
    • /
    • pp.127-140
    • /
    • 2021
  • Recently, sequence data containing time information, such as sensor measurement data and purchase history, has been generated in various applications. So far, many methods for finding sequences that are significantly different from other sequences among given sequences have been proposed. However, most of them have a limitation that they consider only the order of elements in the sequences. Therefore, in this paper, we propose a new anomalous sequence detection method that considers both the order of elements and the time interval between elements. The proposed method uses an extended LSTM autoencoder model, which has an additional layer that converts a sequence into a form that can help effectively learn both the order of elements and the time interval between elements. The proposed method learns the features of the given sequences with the extended LSTM autoencoder model, and then detects sequences that the model does not reconstruct well as anomalous sequences. Using experiments on synthetic data that contains both normal and anomalous sequences, we show that the proposed method achieves an accuracy close to 100% compared to the method that uses only the traditional LSTM autoencoder.

IoT botnet attack detection using deep autoencoder and artificial neural networks

  • Deris Stiawan;Susanto ;Abdi Bimantara;Mohd Yazid Idris;Rahmat Budiarto
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1310-1338
    • /
    • 2023
  • As Internet of Things (IoT) applications and devices rapidly grow, cyber-attacks on IoT networks/systems also have an increasing trend, thus increasing the threat to security and privacy. Botnet is one of the threats that dominate the attacks as it can easily compromise devices attached to an IoT networks/systems. The compromised devices will behave like the normal ones, thus it is difficult to recognize them. Several intelligent approaches have been introduced to improve the detection accuracy of this type of cyber-attack, including deep learning and machine learning techniques. Moreover, dimensionality reduction methods are implemented during the preprocessing stage. This research work proposes deep Autoencoder dimensionality reduction method combined with Artificial Neural Network (ANN) classifier as botnet detection system for IoT networks/systems. Experiments were carried out using 3- layer, 4-layer and 5-layer pre-processing data from the MedBIoT dataset. Experimental results show that using a 5-layer Autoencoder has better results, with details of accuracy value of 99.72%, Precision of 99.82%, Sensitivity of 99.82%, Specificity of 99.31%, and F1-score value of 99.82%. On the other hand, the 5-layer Autoencoder model succeeded in reducing the dataset size from 152 MB to 12.6 MB (equivalent to a reduction of 91.2%). Besides that, experiments on the N_BaIoT dataset also have a very high level of accuracy, up to 99.99%.

Autoencoder-Based Anomaly Detection Method for IoT Device Traffics (오토인코더 기반 IoT 디바이스 트래픽 이상징후 탐지 방법 연구)

  • Seung-A Park;Yejin Jang;Da Seul Kim;Mee Lan Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.281-288
    • /
    • 2024
  • The sixth generation(6G) wireless communication technology is advancing toward ultra-high speed, ultra-high bandwidth, and hyper-connectivity. With the development of communication technologies, the formation of a hyper-connected society is rapidly accelerating, expanding from the IoT(Internet of Things) to the IoE(Internet of Everything). However, at the same time, security threats targeting IoT devices have become widespread, and there are concerns about security incidents such as unauthorized access and information leakage. As a result, the need for security-enhancing solutions is increasing. In this paper, we implement an autoencoder-based anomaly detection model utilizing real-time collected network traffics in respond to IoT security threats. Considering the difficulty of capturing IoT device traffic data for each attack in real IoT environments, we use an unsupervised learning-based autoencoder and implement 6 different autoencoder models based on the use of noise in the training data and the dimensions of the latent space. By comparing the model performance through experiments, we provide a performance evaluation of the anomaly detection model for detecting abnormal network traffic.

Comparison of Data Reconstruction Methods for Missing Value Imputation (결측값 대체를 위한 데이터 재현 기법 비교)

  • Cheongho Kim;Kee-Hoon Kang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.603-608
    • /
    • 2024
  • Nonresponse and missing values are caused by sample dropouts and avoidance of answers to surveys. In this case, problems with the possibility of information loss and biased reasoning arise, and a replacement of missing values with appropriate values is required. In this paper, as an alternative to missing values imputation, we compare several replacement methods, which use mean, linear regression, random forest, K-nearest neighbor, autoencoder and denoising autoencoder based on deep learning. These methods of imputing missing values are explained, and each method is compared by using continuous simulation data and real data. The comparison results confirm that in most cases, the performance of the random forest imputation method and the denoising autoencoder imputation method are better than the others.

Image Enhanced Machine Vision System for Smart Factory

  • Kim, ByungJoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.7-13
    • /
    • 2021
  • Machine vision is a technology that helps the computer as if a person recognizes and determines things. In recent years, as advanced technologies such as optical systems, artificial intelligence and big data advanced in conventional machine vision system became more accurate quality inspection and it increases the manufacturing efficiency. In machine vision systems using deep learning, the image quality of the input image is very important. However, most images obtained in the industrial field for quality inspection typically contain noise. This noise is a major factor in the performance of the machine vision system. Therefore, in order to improve the performance of the machine vision system, it is necessary to eliminate the noise of the image. There are lots of research being done to remove noise from the image. In this paper, we propose an autoencoder based machine vision system to eliminate noise in the image. Through experiment proposed model showed better performance compared to the basic autoencoder model in denoising and image reconstruction capability for MNIST and fashion MNIST data sets.

Comparison Analysis of Deep Learning-based Image Compression Approaches (딥 러닝 기반 이미지 압축 기법의 성능 비교 분석)

  • Yong-Hwan Lee;Heung-Jun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.129-133
    • /
    • 2023
  • Image compression is a fundamental technique in the field of digital image processing, which will help to decrease the storage space and to transmit the files efficiently. Recently many deep learning techniques have been proposed to promise results on image compression field. Since many image compression techniques have artifact problems, this paper has compared two deep learning approaches to verify their performance experimentally to solve the problems. One of the approaches is a deep autoencoder technique, and another is a deep convolutional neural network (CNN). For those results in the performance of peak signal-to-noise and root mean square error, this paper shows that deep autoencoder method has more advantages than deep CNN approach.

  • PDF

From Masked Reconstructions to Disease Diagnostics: A Vision Transformer Approach for Fundus Images (마스크된 복원에서 질병 진단까지: 안저 영상을 위한 비전 트랜스포머 접근법)

  • Toan Duc Nguyen;Gyurin Byun;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.557-560
    • /
    • 2023
  • In this paper, we introduce a pre-training method leveraging the capabilities of the Vision Transformer (ViT) for disease diagnosis in conventional Fundus images. Recognizing the need for effective representation learning in medical images, our method combines the Vision Transformer with a Masked Autoencoder to generate meaningful and pertinent image augmentations. During pre-training, the Masked Autoencoder produces an altered version of the original image, which serves as a positive pair. The Vision Transformer then employs contrastive learning techniques with this image pair to refine its weight parameters. Our experiments demonstrate that this dual-model approach harnesses the strengths of both the ViT and the Masked Autoencoder, resulting in robust and clinically relevant feature embeddings. Preliminary results suggest significant improvements in diagnostic accuracy, underscoring the potential of our methodology in enhancing automated disease diagnosis in fundus imaging.