• Title/Summary/Keyword: autoEncoder

Search Result 124, Processing Time 0.024 seconds

Demosaicing based Image Compression with Channel-wise Decoder

  • Indra Imanuel;Suk-Ho Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.74-83
    • /
    • 2023
  • In this paper, we propose an image compression scheme which uses a demosaicking network and a channel-wise decoder in the decoding network. For the demosaicing network, we use as the input a colored mosaiced pattern rather than the well-known Bayer pattern. The use of a colored mosaiced pattern results in the mosaiced image containing a greater amount of information pertaining to the original image. Therefore, it contributes to result in a better color reconstruction. The channel-wise decoder is composed of multiple decoders where each decoder is responsible for each channel in the color image, i.e., the R, G, and B channels. The encoder and decoder are both implemented by wavelet based auto-encoders for better performance. Experimental results verify that the separated channel-wise decoders and the colored mosaic pattern produce a better reconstructed color image than a single decoder. When combining the colored CFA with the multi-decoder, the PSNR metric exhibits an increase of over 2dB for three-times compression and approximately 0.6dB for twelve-times compression compared to the Bayer CFA with a single decoder. Therefore, the compression rate is also increased with the proposed method than with the method using a single decoder on the Bayer patterned mosaic image.

Generating Synthetic Raman Spectra of DMMP and 2-CEES by Mathematical Transforms and Deep Generative Models (수학적 변환과 심층 생성 모델을 활용한 DMMP와 2-CEES의 모의 라만 분광 생성)

  • Sungwon Park;Boseong Jeong;Hongjoong Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.422-430
    • /
    • 2023
  • To build an automated system detecting toxic chemicals from Raman spectra, we have to obtain sufficient data of toxic chemicals. However, it usually costs high to gather Raman spectra of toxic chemicals in diverse situations. Tackling this problem, we develop methods to generate synthetic Raman spectra of DMMP and 2-CEES without actual experiments. First, we propose certain mathematical transforms to augment few original Raman spectra. Then, we train deep generative models to generate more realistic and diverse data. Analyzing synthetic Raman spectra of toxic chemicals generated by our methods through visualization, we qualitatively verify that the data are sufficiently similar to original data and diverse. For conclusion, we obtain a synthetic dataset of DMMP and 2-CEES with the proposed algorithm.

Latent Shifting and Compensation for Learned Video Compression (신경망 기반 비디오 압축을 위한 레이턴트 정보의 방향 이동 및 보상)

  • Kim, Yeongwoong;Kim, Donghyun;Jeong, Se Yoon;Choi, Jin Soo;Kim, Hui Yong
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.31-43
    • /
    • 2022
  • Traditional video compression has developed so far based on hybrid compression methods through motion prediction, residual coding, and quantization. With the rapid development of technology through artificial neural networks in recent years, research on image compression and video compression based on artificial neural networks is also progressing rapidly, showing competitiveness compared to the performance of traditional video compression codecs. In this paper, a new method capable of improving the performance of such an artificial neural network-based video compression model is presented. Basically, we take the rate-distortion optimization method using the auto-encoder and entropy model adopted by the existing learned video compression model and shifts some components of the latent information that are difficult for entropy model to estimate when transmitting compressed latent representation to the decoder side from the encoder side, and finally compensates the distortion of lost information. In this way, the existing neural network based video compression framework, MFVC (Motion Free Video Compression) is improved and the BDBR (Bjøntegaard Delta-Rate) calculated based on H.264 is nearly twice the amount of bits (-27%) of MFVC (-14%). The proposed method has the advantage of being widely applicable to neural network based image or video compression technologies, not only to MFVC, but also to models using latent information and entropy model.

Comparative analysis of Machine-Learning Based Models for Metal Surface Defect Detection (머신러닝 기반 금속외관 결함 검출 비교 분석)

  • Lee, Se-Hun;Kang, Seong-Hwan;Shin, Yo-Seob;Choi, Oh-Kyu;Kim, Sijong;Kang, Jae-Mo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.834-841
    • /
    • 2022
  • Recently, applying artificial intelligence technologies in various fields of production has drawn an upsurge of research interest due to the increase for smart factory and artificial intelligence technologies. A great deal of effort is being made to introduce artificial intelligence algorithms into the defect detection task. Particularly, detection of defects on the surface of metal has a higher level of research interest compared to other materials (wood, plastics, fibers, etc.). In this paper, we compare and analyze the speed and performance of defect classification by combining machine learning techniques (Support Vector Machine, Softmax Regression, Decision Tree) with dimensionality reduction algorithms (Principal Component Analysis, AutoEncoders) and two convolutional neural networks (proposed method, ResNet). To validate and compare the performance and speed of the algorithms, we have adopted two datasets ((i) public dataset, (ii) actual dataset), and on the basis of the results, the most efficient algorithm is determined.

Style-Based Transformer for Time Series Forecasting (시계열 예측을 위한 스타일 기반 트랜스포머)

  • Kim, Dong-Keon;Kim, Kwangsu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.579-586
    • /
    • 2021
  • Time series forecasting refers to predicting future time information based on past time information. Accurately predicting future information is crucial because it is used for establishing strategies or making policy decisions in various fields. Recently, a transformer model has been mainly studied for a time series prediction model. However, the existing transformer model has a limitation in that it has an auto-regressive structure in which the output result is input again when the prediction sequence is output. This limitation causes a problem in that accuracy is lowered when predicting a distant time point. This paper proposes a sequential decoding model focusing on the style transformation technique to handle these problems and make more precise time series forecasting. The proposed model has a structure in which the contents of past data are extracted from the transformer-encoder and reflected in the style-based decoder to generate the predictive sequence. Unlike the decoder structure of the conventional auto-regressive transformer, this structure has the advantage of being able to more accurately predict information from a distant view because the prediction sequence is output all at once. As a result of conducting a prediction experiment with various time series datasets with different data characteristics, it was shown that the model presented in this paper has better prediction accuracy than other existing time series prediction models.

Stacked Autoencoder Based Malware Feature Refinement Technology Research (Stacked Autoencoder 기반 악성코드 Feature 정제 기술 연구)

  • Kim, Hong-bi;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.593-603
    • /
    • 2020
  • The advent of malicious code has increased exponentially due to the spread of malicious code generation tools in accordance with the development of the network, but there is a limit to the response through existing malicious code detection methods. According to this situation, a machine learning-based malicious code detection method is evolving, and in this paper, the feature of data is extracted from the PE header for machine-learning-based malicious code detection, and then it is used to automate the malware through autoencoder. Research on how to extract the indicated features and feature importance. In this paper, 549 features composed of information such as DLL/API that can be identified from PE files that are commonly used in malware analysis are extracted, and autoencoder is used through the extracted features to improve the performance of malware detection in machine learning. It was proved to be successful in providing excellent accuracy and reducing the processing time by 2 times by effectively extracting the features of the data by compressively storing the data. The test results have been shown to be useful for classifying malware groups, and in the future, a classifier such as SVM will be introduced to continue research for more accurate malware detection.

A Deep Neural Network Model Based on a Mutation Operator (돌연변이 연산 기반 효율적 심층 신경망 모델)

  • Jeon, Seung Ho;Moon, Jong Sub
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.12
    • /
    • pp.573-580
    • /
    • 2017
  • Deep Neural Network (DNN) is a large layered neural network which is consisted of a number of layers of non-linear units. Deep Learning which represented as DNN has been applied very successfully in various applications. However, many issues in DNN have been identified through past researches. Among these issues, generalization is the most well-known problem. A Recent study, Dropout, successfully addressed this problem. Also, Dropout plays a role as noise, and so it helps to learn robust feature during learning in DNN such as Denoising AutoEncoder. However, because of a large computations required in Dropout, training takes a lot of time. Since Dropout keeps changing an inter-layer representation during the training session, the learning rates should be small, which makes training time longer. In this paper, using mutation operation, we reduce computation and improve generalization performance compared with Dropout. Also, we experimented proposed method to compare with Dropout method and showed that our method is superior to the Dropout one.

A study on speech disentanglement framework based on adversarial learning for speaker recognition (화자 인식을 위한 적대학습 기반 음성 분리 프레임워크에 대한 연구)

  • Kwon, Yoohwan;Chung, Soo-Whan;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.447-453
    • /
    • 2020
  • In this paper, we propose a system to extract effective speaker representations from a speech signal using a deep learning method. Based on the fact that speech signal contains identity unrelated information such as text content, emotion, background noise, and so on, we perform a training such that the extracted features only represent speaker-related information but do not represent speaker-unrelated information. Specifically, we propose an auto-encoder based disentanglement method that outputs both speaker-related and speaker-unrelated embeddings using effective loss functions. To further improve the reconstruction performance in the decoding process, we also introduce a discriminator popularly used in Generative Adversarial Network (GAN) structure. Since improving the decoding capability is helpful for preserving speaker information and disentanglement, it results in the improvement of speaker verification performance. Experimental results demonstrate the effectiveness of our proposed method by improving Equal Error Rate (EER) on benchmark dataset, Voxceleb1.

Performance Analysis and the Novel Optical Decoder Scheme for Optical CDMA System (광 CDMA를 위한 새로운 광복호기 설계와 성능분석)

  • 강태구;윤영설;최영완
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7C
    • /
    • pp.712-722
    • /
    • 2002
  • We have investigated a novel optical decoder for a fiber-optic code division multiple access(CDMA) communication systems. The conventional optical encoder and decoder have the advantage of simple structure. However the number of users in the system is limited by the auto- and cross-correlation properties generated in decoding process. In previous studies, to improve the system performance, although they used an optical code that minimize the sidelobe and cross-correlation, could not yet find a novel methods for performance improvement in fiber-optic CDMA system. Thus, it is necessary to investigate the novel optical decode in order to improve the performance of system. In this paper, we schematize the AND gate logic element(AGLE) composed with 1$\times$2 or 1$\times$3 coupler and the optical thyristor and propose the novel optical decoder using K(weight) AGLE. The optical thyristor only passes the overlapped signal and clips other signals. Such a novel concept means that the optical thyristor can operate as a hard-limiter. We analyze the fiber-optic CDMA system using the novel optical decoder with simulation and is found that the novel optical decoder using the AGLE and optical thyristor excludes the sidelobe and cross-correlation intensity between any two sequences.

Deep Learning-Based Stock Fluctuation Prediction According to Overseas Indices and Trading Trend by Investors (해외지수와 투자자별 매매 동향에 따른 딥러닝 기반 주가 등락 예측)

  • Kim, Tae Seung;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.367-374
    • /
    • 2021
  • Stock price prediction is a subject of research in various fields such as economy, statistics, computer engineering, etc. In recent years, researches on predicting the movement of stock prices by learning artificial intelligence models from various indicators such as basic indicators and technical indicators have become active. This study proposes a deep learning model that predicts the ups and downs of KOSPI from overseas indices such as S&P500, past KOSPI indices, and trading trends by KOSPI investors. The proposed model extracts a latent variable using a stacked auto-encoder to predict stock price fluctuations, and predicts the fluctuation of the closing price compared to the market price of the day by learning an LSTM suitable for learning time series data from the extracted latent variable to decide to buy or sell based on the value. As a result of comparing the returns and prediction accuracy of the proposed model and the comparative models, the proposed model showed better performance than the comparative models.