• Title/Summary/Keyword: auto-scaling

Search Result 48, Processing Time 0.022 seconds

The Design of Hybrid Fuzzy Controller Based on Parameter Estimation Mode Using Genetic Algorithms (유전자 알고리즘을 이용한 파라미터 추정모드기반 하이브리드 퍼지 제어기의 설계)

  • 이대근;오성권;장성환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.228-231
    • /
    • 2000
  • A hybrid fuzzy controller by means of the genetic algorithms is presented. The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PlD's output in steady state by a fuzzy variable. The HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance than any other controller. A auto-tuning algorithms is presented to automatically improve the performance of hybrid fuzzy controller using genetic algorithms. The algorithms estimates automatical Iy the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules. Especially, in order to auto-tune scaling factors and PID parameters of HFC using GA three kinds of estimation modes are effectively utilized. The HFCs are applied to the second process with time-delay. Computer simulations are conducted at step input and the performances of systems are evaluated and also discussed in ITAE(Integral of the Time multiplied by the Absolute value of Error ) and other ways.

  • PDF

Analysis and Auto-tuning of Scale Factors of Fuzzy Logic Controller

  • Lee, Chul-Heui;Seo, Seon Hak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.51-56
    • /
    • 1998
  • In this paper, we analyze the effects of scaling factors on the performance of a fuzzy logic controller(FLC). The quantitative relation between input and output variables of FLC is obtained by using a qualsi-linear fuzzy model, and an approximate transfer function of FLC is dervied from the comparison of it with the conventional PID controller. Then we analyze in detail the effects of scaling factor using this approximate transfer function and root locus method. Also we suggest an on-line tuning method for scaling factors which employs an sample performance function and a variable reference for tuning index.

  • PDF

The Hybrid Fuzzy Controller using the Hybrid Auto-tuning Algorithm (하이브리드 자동 동조 알고리즘을 이용한 하이브리드 퍼지 제어기)

  • Lee, Dae-Keun;Kim, Joong-Young;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.521-523
    • /
    • 1999
  • In this paper, we propose the hybrid fuzzy controller(HFC) and the hybrid auto-tuning algorithm. The proposed HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance such as sensitivity improvement in steady state and robustness in transient state than any other controller. In addition, a hybrid auto-tuning algorithm which consists of genetic algorithm and complex algorithm to automatically generate weighting factor, scaling factors and PID control gains optimizes the output of HFC. As an typical example of non-linear system in control theory an inverted pendulum will be controlled by the suggested HFC and illustrated the performance and applicability of this proposed method by simulation.

  • PDF

Rapid Auto-scaling Mechanism using GPU for Resource High Availability based on DSV (DSV 기반 자원 고가용성을 위해 GPU를 이용한 신속한 자동 확장 기법)

  • Park, Boo-Kwang;Kim, Hyun-Woo;Byun, HwiRim;Heo, Yoon-A;Song, Eun-Ha;Jeong, Young-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.197-198
    • /
    • 2015
  • IT 기술의 진보적 발전에 따라 클라우드 컴퓨팅 분야 연구들이 활발히 진행되고 있다. 클라우드 컴퓨팅은 가상화 기술을 이용하여 크게 인프라, 플랫폼, 소프트웨어 관점으로 나뉘어 사용자에게 다양한 서비스를 제공한다. 가상화 기술 중에 Desktop Storage Virtualization (DSV)은 분산된 레거시 데스크탑으로 구성되어 있기 때문에 비가용 상태 시간별 클러스터링 및 사용자 요청에 따른 자동 확장이 매우 중요시된다. 본 논문에서는 GPU의 many-core를 이용하여 분산된 데스크탑의 성능 상태 분석 및 자동 확장을 위해 스레드별로 호스트를 매핑하고 병렬적으로 처리하는 Rapid Auto Scaling Mechanism (RASM)을 제안한다.

Performance Evaluation of Scaling based Dynamic Time Warping Algorithms for the Detection of Low-rate TCP Attacks (Low-rate TCP 공격 탐지를 위한 스케일링 기반 DTW 알고리즘의 성능 분석)

  • So, Won-Ho;Shim, Sang-Heon;Yoo, Kyoung-Min;Kim, Young-Chon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.33-40
    • /
    • 2007
  • In this paper, low-rate TCP attack as one of shrew attacks is considered and the scaling based dynamic time warping (S-DTW) algorithm is introduced. The low-rate TCP attack can not be detected by the detection method for the previous flooding DoS/DDoS (Denial of Service/Distirbuted Denial of Service) attacks due to its low average traffic rate. It, however, is a periodic short burst that exploits the homogeneity of the minimum retransmission timeout (RTO) of TCP flows and then some pattern matching mechanisms have been proposed to detect it among legitimate input flows. A DTW mechanism as one of detection approaches has proposed to detect attack input stream consisting of many legitimate or attack flows, and shown a depending method as well. This approach, however, has a problem that legitimate input stream may be caught as an attack one. In addition, it is difficult to decide a threshold for separation between the legitimate and the malicious. Thus, the causes of this problem are analyzed through simulation and the scaling by maximum auto-correlation value is executed before computing the DTW. We also discuss the results on applying various scaling approaches and using standard deviation of input streams monitored.

An Efficient VM-Level Scaling Scheme in an IaaS Cloud Computing System: A Queueing Theory Approach

  • Lee, Doo Ho
    • International Journal of Contents
    • /
    • v.13 no.2
    • /
    • pp.29-34
    • /
    • 2017
  • Cloud computing is becoming an effective and efficient way of computing resources and computing service integration. Through centralized management of resources and services, cloud computing delivers hosted services over the internet, such that access to shared hardware, software, applications, information, and all resources is elastically provided to the consumer on-demand. The main enabling technology for cloud computing is virtualization. Virtualization software creates a temporarily simulated or extended version of computing and network resources. The objectives of virtualization are as follows: first, to fully utilize the shared resources by applying partitioning and time-sharing; second, to centralize resource management; third, to enhance cloud data center agility and provide the required scalability and elasticity for on-demand capabilities; fourth, to improve testing and running software diagnostics on different operating platforms; and fifth, to improve the portability of applications and workload migration capabilities. One of the key features of cloud computing is elasticity. It enables users to create and remove virtual computing resources dynamically according to the changing demand, but it is not easy to make a decision regarding the right amount of resources. Indeed, proper provisioning of the resources to applications is an important issue in IaaS cloud computing. Most web applications encounter large and fluctuating task requests. In predictable situations, the resources can be provisioned in advance through capacity planning techniques. But in case of unplanned and spike requests, it would be desirable to automatically scale the resources, called auto-scaling, which adjusts the resources allocated to applications based on its need at any given time. This would free the user from the burden of deciding how many resources are necessary each time. In this work, we propose an analytical and efficient VM-level scaling scheme by modeling each VM in a data center as an M/M/1 processor sharing queue. Our proposed VM-level scaling scheme is validated via a numerical experiment.

Optimal Auto-tuning of Fuzzy control rules by means of Genetic Algorithm (유전자 알고리즘을 이용한 퍼지 제어규칙의 최적동조)

  • Kim, Joong-Young;Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.588-590
    • /
    • 1999
  • In this paper the design method of a fuzzy logic controller with a genetic algorithm is proposed. Fuzzy logic controller is based on linguistic descriptions(in the form of fuzzy IF-THEN rules) from human experts. The auto-tuning method is presented to automatically improve the output performance of controller utilizing the genetic algorithm. The GA algorithm estimates automatically the optimal values of scaling factors and membership function parameters of fuzzy control rules. Controllers are applied to the processes with time-delay and the DC servo motor. Computer simulations are conducted at the step input and the output performances are evaluated in the ITAE.

  • PDF

Auto-Tuning Method for fuzzy Controller Using Genetic Algorithms (유전 알고리즘을 이용한 퍼지 제어기의 자동 동조)

  • Rho, Gi-Gab;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.728-731
    • /
    • 1997
  • This paper proposes the systematic auto-tuning method for fuzzy controller using genetic algorithm(GA). In general, the design of fuzzy logic controller has difficulties in the acquisition of expert's knowledge and relies to a great extent on heuristic knowledge which, in many cases, cannot be objectively justified. So, the performance of the controller can be degraded in the case of plant parameter variations or unpredictable incident which the designer may have ignored. Proposed genetic algorithm searches the optimal rule structure, parameters of membership functions and scaling factors simultaneously and automatically by a new genetic coding format. Inverted pendrum system is provided to show the advantages of the proposed method.

  • PDF

Auto-tunning of a FLC using Neural Networks (신경망을 이용한 서보제어기의 자동조정)

  • Yeon, Jae-Kuen;Yum, Jin-Ho;Nam, Hyun-Do
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1034-1036
    • /
    • 1996
  • In this paper, an adaptive fuzzy logic controller is presented for auto-tunning of the scaling factors by using learning capability of neural networks. The proposed scheme consists of the FLC which includes the PI-type FLC and PD-type FLC in parallel form and the neural network which learns scale factors of FLC. Computer simulations were performed to illustrate the effectiveness of a proposed scheme. A proposed FLC controller was applied to the second order system and velocity control of the brushless DC motors. For the design of the FLC, tracking error, change of error, and acceleration error are selected as input variables of the FLC and three seal e factors were used in the parallel-type FLC. This scheme can be used to reduce the difficulty in the selection of the scale factors.

  • PDF

Injuries Analysis and Interpretation of Standard Age and Sex in KIDAS Accident Statistics (KIDAS 사고 통계에서 표준 연령 남녀의 상해 분석 및 해석연구)

  • Park, Jiyang;Youn, Younghan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2019
  • KIDAS (Korean In-Depth Accident Study) is a data structure of accident investigation type, vehicle breakage and human injury database. A consortium of research institutes, universities, and medical institutions has been established and operated. KIDAS has the strongest difference from the TAAS (Traffic Accident Analysis System), which is the data of the National Police Agency, that it can grasp the injury information of passengers. In this study, the mean age and weight of the most frequent accident types in the KIDAS accident statistics were calculated to determine the degree of injury according to gender. Through the MADYMO analysis, it is aimed to grasp the difference of dummy injury using commercial dummy models and scaling models are currently used.