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Abstract

In this paper, we analyze the effects of scaling factors on the performance of a fuzzy logic
controller(FLC). The quantitative relation between input and output variables of FLC is obtained by
using a quasi-linear fuzzy model, and an approximate transfer function of FLC is derived from the
comparison of it with the conventional PID controller. Then we analyze in detail the effects of
scaling factor using this approximate transfer function and root locus method. Also we suggest an
on-line tuning method for scaling factors which employs an sample performance function and a

variable reference for tuning index.
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1.Introduction

In recent years fuzzy logic control has
emerged as one of the most active and fruitful
areas in the application of fuzzy set theory. Fuzzy
logic control appears very wuseful when the
mathematical treatment of system is difficult
because of its nonlinearities and complexity[1].

Since fuzzy logic controller(FLC) determines
the control action nonlinearly due to the fuzzy
rule base and the inference mechanism, it can
cover broader range of operational conditions than
conventional PID controller, and give better and
robust performance[2]. However, it doesn't mean
that there exist tractable systematic methods for
designing FLC.

In general, The parameters of FLC such as
linguistic and membership functions are
usually tuned through trial and error, and tuning
of FLC is more difficult than that of a

_ conventional controller{3-7].

However, for easy implementation and
satisfactory performance, systematic and excellent
tuning mechanism should be provided. If possible,
we had better know beforehand the effect of
these parameters on the system characteristics to
develop a systematic tuning method which is
capable of improving system performance.

Thus, in this paper, we present a quantitative
analysis of the effect of scaling factors on the
performance of a FLC as well as qualitative one,
and also propose a new auto-tuning method of

rules

them based on the evaluation of system response.

We derive by wusing Sugeno's quasi-linear
fuzzy model(QLFM) a quantitative formula of
input-output relation which is a function of
scaling factors, and examine the effect of scaling
factor by applying root locus method to the
approximate transfer function of FLC. Through
this analysis, we obtain the relation between
scaling factors and system response.

The proposed on-line tuning method uses error
ratio as a tuning index and uses a variable
reference for tuning index to handle both coarse
control mode and fine control mode. The sample
performance function is introduced to measure the
system performance at each data step.

2. Analysis of the Effect of Scaling Factors
2.1 Fuzzy Logic Controll:r and Scaling Factors

FLC receives crisp values as input and
produces crisp output as control input applied to
controlled system, while it internally handles fuzzy
values described by membership functions. Also
FLC has a mechanism which can convert a
linguistic control strategy into an automatic control
strategy. Therefore FLC usually consists of scaling
factors, fuzzifier, rule base, inference engine and
defuzzifier, as shown in Fig.l

The  operation of FLC  requires the
fuzzification that attaches each crisp input to
fuzzy subsets with grades of membership



depending on a priori chosen ~membership
functions. The membership functions of the input
and output variables are usually defined within
normalized. universe of discourse for simplicity

and generality. Thus, to match physical signal
world with fuzzy world inside FLC, an
appropriate  choice  of  scaling factors s
indispensable.
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Fig. | Typical Structure of Fuzzy Controller

The scaling factors play a role similar to that
of the gain coefficients in a conventional
controiler. In other words, they are the source of
possible instabilities, oscillation problems, and
deteriorated damping effects.

2.2 Qualitative Analysis of Scaling Factors

If scaling factor of a fuzzy variable is
changed, the definition of each membership
function will be changed by same ratio. For
example, if the input value is scaled by 1/6 as
shown in Fig.2, an input value of 2.5 is classified
as PS and PM. On the other hand, with scaling
factor of 1/3 a value of 2.5 is now classified as
PM and PB. It implies the meaning of either the
antecedent or the consequents in the rules is
changed.

Hence a change of scaling factor may affect
all of the linguistic rules in rule base. As a
result, the behavior characteristics of FLC
becomes quite different.
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Fig. 2. Change of Meaning of fuzzy variables
by scaling factor

Now we provide another interpretation of the
effect of scaling factors. Assume that input
variable ¢ and e is scaled by k. and kg

individually. If scaling factor are changed to k.
and k¢, the slope of switching line in phase plane
is changed as shown in Fig.3. Thus ill scaling
results in either shifting the operating area to the

boundaries or inclining the operational range
toward a certain specific area.
Ane
7/ ¢
K.’ €
slope= —
kd
slope= —=
d

Fig.3 Shift of Switching Line by Scaling Factor

Remark Nonlinear scaling factors yield the
basically identical effect even though their
mapping relations are more complicated.

In the same manner, the adjustment of the
output sealing factor affects the closed loop gain
of overall system.

As seen from above qualitative analysis,
scaling factors have significant influences on the
characteristics and the performance of FLC.

2.3 Quantitative Analysis of Scaling Factors

In general, FLC has the linguistic rules of the
following type;

IF e is A and Jde is B, and 4% is C, (N
THEN Au is D

But the linguistic control rule of the type in
eq.(1) can't furnish the clue for the quantitative
relation between input and output variable of
FLC. Therefore, in order to obtain the quantitative

scope of the effect of scaling factors, we
introduce  Sugeno's quasi-linear fuzzy model
(QLFM) where the consequents employ the

functions of variable

subsets;

input instead of fuzzy

R :IF ¢ is A and Ae is B and A% is C,
THEN Ay’ = ae’ + Biae + }que‘ (2)

We can show with ease that the control
surface of QLFM-FLC is almost equal to the
conventional FLC. In Fig4 the control surface of
the typical Pl-like FLC with 7x7 rules[2] is
compared with that of QLFM where back
propagation is used in learning the parameters in
consequents. It offers the validity of substitution



of (1) by (2). Thus we can proceed the analysis
using QLFM without loss of generality.
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Fig. 4b Control surface by QLFM

Let's denote scaling factors of input variable e,
de, and de by ke(=1/s.), ka(=1/sq), and
ki(=1/s,), respectively. Also let's denote scaling
factor of output variable u by ku(=s,). Then the
relation between fuzzy variable and corresponding
variable is given by

e = ke S < e < S (2.a)
se’ = kane Sq <Ae < Sq (2.b)
a’e’ = kate S, < A'e < S, 2.¢)
A = auk, Se € Au < S, 2.d

Then the ourput of FLC before denormalization
is given by

5 r,aui(n)
au’(n) S 2 R b
>
. 1=
= gvi(aie'(n)+ﬁiAe'(n)+7izix2e'(n)) (4)
=K (n) + Kpoe*(n) + Kpae'(n)
where 7. is firing level of i-th rule, and v, is
weighting factor due to fuzzy reasoning.
75
v, = (5)
2
=
And Kp, K; and K, are defined by
Kp: vaia/i (68.)

(6.)
(6.c)

Eq.(4) is very similar to the control law of a
velocity type conventional PID controller, and
Kp, K; and K, act like PID gains.

From eq.(2) and eq.(4), we can make explicit
formula describing  the input-output relation in
terms of scaling factors.

auln) :kiﬁxu'(n) .
= K;ki,l_%?(n) + Kpk,kyae(n) N
+ Kpk.ko2 %e(n)

The control law and transfer function of a
position type PID controller are as follows.
u(t) = Kpe(t) + Kp 9L K, [e(t)at (8)
K
GPID(S) b K + KDS+ “’_I (9)

KDS +KPS+K1
S

We can convert continuous PID controller (8) to
discrete one with the assumption that sampling
time T is sufficiently small;
aun) = KiT-en) + K,ae(n)HKp/T)A%e(n) (10)

From the comparison of eq.(7) with eg.(10),
we know that the conventional PID controller is
equivalent to PID-like FLC, if the following
equations hold.

Kpr= Kpkykyg (11.a)
K= Kk,k./T (11.b)
= Kpk,k,T (11.¢)
Remark We must note that, in practice, the

values of gain parameters Kp, K, and K, of
PID-like FL.C vary at each time step due to fuzzy
reasoning, while the conventional PID controller
has fixed gains over all time steps. This point
just explains the nonlinear control action of FLC.

However, by substituting eq.(11) into eq.(9),
we can get the approximate transfer function of
FLC.

(KpkkD)s' + (Kpkkg)s

G].-C(S,): _ s (]2)
. (Kikk/T)  Nge(s)
s - s
Let the transfer function of the controlled

system be Ggp(s)=Ny(s)/Dy(s), Then
function of overall system becomes

the transfer



G p(S) G g (s)

M) = 7356, 6 ™ (13)
- N, (s) Npeg
sD p(S) + Np(s) Ngc (s)
Since  scaling factors are included in

denominator of M(s), the change of their values
causes immediately the shift of dominant poles.
As you know, the transient response of system is
mainly governed by dominant poles. Thus the
effect of scaling factors on system performance
can be analyzed in detail by using the relation
between the dominant poles of closed-loop system
and PID gains (Refer to [8]). But it's a
considerably complicated and hard work.

We may carry out the analysis more
conveniently if we use root locus method.
PID-like FLC adds one pole located in origin and
two zeros to the open loop transfer function of
the system. In general, pole padding to the open
loop transfer function pushes the root loci toward
the right side of s-plane, while zero padding
pushes it toward the opposite side[9]. As scaling
factors change, the location of poles and zeros

changes and then the root locus becomes
different, and the response of overall system
changes in consequence.
For instance, consider a plant given by
P
G = I D 7D (14)

Two zeros of FLC added to open loop transfer

function are

~Kpky +V (Kpky)'~
2KpTks

4Kp K kk,

(15)

Z), Zy=

Fig.5 shows root loci according to different values
of zeros of FLC.
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Fig. 5 Root Locus of closed-loop System

Thus the following facts are observed from
€q.(12) and these loci :

1) as k, increases, system gain increases

ii) as k4 increases, zeros of FLC become real
and their magnitudes increase. Therefore root
locus moves from @ toward @.

iii) as k. increases, zeros of FLC become
complex. When they still remain real,
they decrease in magnitude and root locus
tends to move from @ to (D). On the
contrary, if they are changed to complex. their
imaginary parts increase in magnitude, and
root locus moves from & to (9.

iv) as ks increases, zeros of FLC become
complex. When they still remain real, they
decrease in magnitude and root locus tends to
move from @ to (. On the contrary, if they
are changed to complex, both imaginary parts

and real parts decrease in magnitude, root
locus moves from & to & or @).
In the same way, similar results can be

obtained for Pl-like FLC and PD-like FLC.[10]
Although the observations are not
always true with respect to all the possible cases,
they represent the general tendency of the
behavior of scaling factors related to dominant
poles. Moreover, they are still valid by and large
even if the plant transfer function is different.
Therefore the effect of scaling factor on transient
response of system can be extracted from these
observations. They are summarized in Table 1.

above

Table 1. Relation of scaling factors and transient
response of system
ke ka | ks | ki
decrease of overshoot/ i ;
oscillation v v
decrease of response l N £
speed(rise time) v : ‘
decrease of steady- 1 |
state error
increase of system gain 1

3. On-line Tuning of Scaling Factors

Now, by virtue of the above analysis, we can
tune the scaling factors by a technique based on
the concepts similar to that for PID gain turning.
Maeda and others have been suggested some
approaches of this category[4-6]. First, the control



performance is evaluated by using overshoot,
response speed, and error. Next scaling factors are
tuned according to the grade of goodness.
However, this procedure is not on-line but
repeated learning at the end of control interval.

So we suggest an on-line tuning method
which tuning index and a sample
performance function to determine the changes in
scaling factors at each data step.

The tuning index p is defined as a ratio of
two consecutive values of output error sequence
in time[11].

__e(m)
= eln—1)

uses a

(16)

It decides whether scaling factors should be
updated or not. If |p| is greater than a reference
o then the scaling factors are changed. So as to
take both coarse control mode and fine control
mode into considerations, we use a variable
reference for tuning index defined as follows.

o, =ap, + Bo.

=0, 8+0, |e|§Eth
ax0, B=0, lel>Ey

(17)
(18)

where a, A, and Ey are constants.
We cannot use the values of overshoot, rise
time, steady state error and amplitude for tuning

at each data step because these values are
calculated at the end of the control interval.
Therefore the sample performance function is
proposed in order to measure the system

performance at each data step.
The sample performance function is defined by

SP(n) = min{SPI(n), SPO(n)} (19)
SPI(N) = g exnc(e(n), Ae(n)) (20)
SPO(n) = u aulAu(n)) 2n

Since the relation between output error e¢ and
change of error Ae is as shown in Fig. 6, the
fuzzy rule base for SPI is given by Table. 2, and

the fuzzy rule base for SPO is presented in
Table. 3. The membership functions for the
antecedents of these rules are of equi-distant

triangular type, and the consequents are fuzzy
singletons with BD=0, MM=0.5, and GD=1.
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Fig. 6 System Chracteristic in phase plane

Table 2. Rule base for SPI

Ae ¢ NB NS ZE PS PB
PB GD | MM | MM BD BD
PS MM | GD GD | MM BD
ZE MM | GD GD GD | MM
NS BD | MM | GD GD | MM
NB BD BD | MM | MM | GD

NB:Negative Big, PB:Positive Big, ZE:ZEro
NS:Negative Small, PSpositive Small, GD:GooD
MM:MediuM, BD:BaD

Table 3. Rule Base for SPO

yan|
\ NB NS ZE PS PB

BD MM GD | MM BD

Finally scaling factor SF is tuned by
SF(n) = SF(n-1) + w « sgn(ASF)(1-SP(n))  (22)
where w is the step size of change, and sgn(A
SF) is a sign function which indicates the
increase or decrease in the quantity of scaling
factors.

From eq.(21), if the sample performance is of
good grade, then scaling factor variation is lower
and vice versa. This on-line tuning procedure is
going on until the system reaches to the
steady-state, i.e., lel<g .

4. Conclusions

Scaling factors act as the mapping operators
which map input/output values to the universe of
discourse of the fuzzy variables. An appropriate
choice of them is necessary and important since
they have a great effect on system performance.
Therefore, in this paper, we analyze quantitatively
the effect of scaling factors via the comparison of
QLFM FLC with the conventional PID controller.
The result obtained from this analysis may be
useful for development of tuning algorithm for
them.

Also we suggest an on-line tuning method in
which the variable reference for tuning index and
the sample performance function play an
important role. The proposed method works well,
and improves the control performance of FLC.
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