• Title/Summary/Keyword: augmented variable

Search Result 65, Processing Time 0.023 seconds

Robust Digital Position Control of Brushless DC Motor (외란에 둔감한 브러쉬없는 직류전동기(BLDC Motor)의 디지털 위치제어)

  • 고종선;조관열;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.1
    • /
    • pp.36-48
    • /
    • 1990
  • A new control method for robust position control of brushless dc motor is presented. The model of brushless dc motor is approximately linearized by field-orentation method, and it is shown that augmented state variable feedback can be applied to this system. In addition, robustness is obtained without any change of overall system response. Load disturbance is detected by 0-observer of unknown and inaccessible input, and is compensated by feedforward which has fast response. Overall system is controlled by using the MC68000 microprocessor, and the performance of the proposed control algorithm is verified by the results of simulation and experiment.

A controller design using modal decomposition of matrix pencil

  • Shibasato, Koki;Shiotsuki, Tetsuo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.492-492
    • /
    • 2000
  • This paper proposes LQ optimal controller design method based on the modal decomposition. Here, the design problem of linear time-invariant systems is considered by using pencil model. The mathematical model based on matrix pencil is one of the most general representation of the system. By adding some conditions the model can be reduced to traditional system models. In pencil model, the state feedback is considered as an algebraic constraint between the state variable and the control input variable. The algebraic constraint on pencil model is called purely static mode, and is included in infinite mode. Therefore, the information of the constant gain controller is included in the purely static mode of the augmented system which consists of the plant and the control conditions. We pay attention to the coordinate transformation matrix, and LQ optimal controller is derived from the algebraic constraint of the internal variable. The proposed method is applied to the numerical examples, and the results are verified.

  • PDF

A direct treatment of Min-Max dynamic response optimization problems (Min-Max형 동적 반응 최적화 문제의 직접 처리기법)

  • 박흥수;김종관;최동훈
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.81-88
    • /
    • 1993
  • A direct treatment of the min-max type objective function of the dynamic response optimization problem is proposed. Previously, the min-max type objective function was transformed to an artificial design variable and an additional point-wise state variable constraint function was imposed, which increased the complexity of the optimization problem. Especially, the design sensitivity analysis for the augmented Lagrangian functional with the suggested treatment is established by using the adjoint variable method and a computer program to implement the proposed algorithm is developed. The optimization result of the proposed treatment are obtained for three typical problems and compared with those of the previous treatment. It is concluded that the suggested treatment in much more efficient in the computational effort than the previous treatment with giving the similar optimal solutions.

  • PDF

Modeling and Multivariable Control of a Novel Multi-Dimensional Levitated Stage with High Precision

  • Hu Tiejun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • This paper presents the modeling and multivariable feedback control of a novel high-precision multi-dimensional positioning stage. This integrated 6-degree-of-freedom. (DOF) motion stage is levitated by three aerostatic bearings and actuated by 3 three-phase synchronous permanent-magnet planar motors (SPMPMs). It can generate all 6-DOF motions with only a single moving part. With the DQ decomposition theory, this positioning stage is modeled as a multi-input multi-output (MIMO) electromechanical system with six inputs (currents) and six outputs (displacements). To achieve high-precision positioning capability, discrete-time integrator-augmented linear-quadratic-regulator (LQR) and reduced-order linearquadratic-Gaussian (LQG) control methodologies are applied. Digital multivariable controllers are designed and implemented on the positioning system, and experimental results are also presented in this paper to demonstrate the stage's dynamic performance.

Modified sigmoid based model and experimental analysis of shape memory alloy spring as variable stiffness actuator

  • Sul, Bhagoji B.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.361-377
    • /
    • 2019
  • The stiffness of shape memory alloy (SMA) spring while in actuation is represented by an empirical model that is derived from the logistic differential equation. This model correlates the stiffness to the alloy temperature and the functionality of SMA spring as active variable stiffness actuator (VSA) is analyzed based on factors that are the input conditions (activation current, duty cycle and excitation frequency) and operating conditions (pre-stress and mechanical connection). The model parameters are estimated by adopting the nonlinear least square method, henceforth, the model is validated experimentally. The average correlation factor of 0.95 between the model response and experimental results validates the proposed model. In furtherance, the justification is augmented from the comparison with existing stiffness models (logistic curve model and polynomial model). The important distinction from several observations regarding the comparison of the model prediction with the experimental states that it is more superior, flexible and adaptable than the existing. The nature of stiffness variation in the SMA spring is assessed also from the Dynamic Mechanical Thermal Analysis (DMTA), which as well proves the proposal. This model advances the ability to use SMA integrated mechanism for enhanced variable stiffness actuation. The investigation proves that the stiffness of SMA spring may be altered under controlled conditions.

Design of Optimal Controller Using Discrete Sliding Mode

  • Kim Min-Chan;Ahn Ho-Kyun;Kwak Gun-Pyong;Nam Jing-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.198-201
    • /
    • 2004
  • In this paper, the discrete optimal control is made to have the robust property of Sliding mode controller. A augmented system with a virtual state is constructed for this objective and noble sliding surface is constructed based on this system. The sliding surface is the same as the optimal control trajectory in the original system. The states follow the optimal trajectory even if there exist uncertainties. The reaching phase problem of sliding mode control is disappear in this method.

Differences in Presence, Immersion, and Situation Interest in Small Group Learning Using Augmented Reality Based on the Degree of Tool Sharing (증강현실을 활용한 소집단 학습에서 도구 공유 정도에 따른 현존감, 몰입, 상황흥미의 차이)

  • Taehee Noh;Jaewon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.93-106
    • /
    • 2024
  • This study investigated differences in presence, immersion, and situational interest in small group learning using augmented reality, based on the degree of tool sharing. 84 eighth-grade students participated in small groups of four. Each group was randomly assigned to one of three environments based on marker and device sharing: the shared environment (shared marker and device usage), the mixed environment (shared marker and individual device usage), and the individual environment (individual marker and device usage). Small group learning using augmented reality was conducted for three class periods, focusing on the "Characteristics of Matter" unit. One-way ANOVA results for the dependent variables revealed that, compared to the shared environment, presence and situational interest were significantly higher in the mixed environment, while immersion and situational interest were significantly higher in the individual environment. MANOVA results for the sub-components of each dependent variable showed significant differences in realness for presence, antecedents and experiences for immersion, and instant enjoyment, novelty, and total interest for situational interest. Analysis of interviews and classroom observations indicated that students in shared and individual environments tended to use their devices individually when utilizing augmented reality. However, in mixed environments, students showed a tendency to use their devices collaboratively, leading to more active interactions. Based on these findings, environments for using tools to enhance the effectiveness of small group learning using augmented reality are discussed.

Three Dimensional Dynamic Added Variable Plots

  • Seo, Han-Son
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.2
    • /
    • pp.345-353
    • /
    • 2004
  • Graphical methods for the specification of the curvature as a function of two predictors are animated to see the effect of an added variable to the model. Through a 3D animated plot it might be difficult to find a sequence of interpretable plots. But examples demonstrate that useful information can be obtained by using rotation technique in 3D plot. Besides 3D plots, an example of 2D animated plot applied to the case of high correlation between predictors and an added predictor is also given. It implies that speed of the convergence to a certain image in a dynamic plot may be understood as an influence of collinearity.

Evaluation of Suitability of Fire Images augmented using GAN Algorithm (GAN 알고리즘을 이용하여 증식된 화재 영상의 적합성 평가)

  • Son, SeongHyeok;Choi, Donggyu;Jang, Si-woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.77-79
    • /
    • 2022
  • A large amount of related images are required to detect images with variable shapes. Therefore, in this paper, fire images among images with variable shapes are multiplied through GAN algorithms, and detection rates when AI learning is performed using this image are compared to analyze whether the multiplied images are suitable for learning data.

  • PDF

Design of a Variable Stability Flight Control System

  • Park, Sung-Su;Ko, Joon-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.162-168
    • /
    • 2008
  • A design objective for variable stability flight control system is to develop a controller of in-flight simulation capability that forces the aircraft being flown to follow the dynamics of other aircraft. This paper presents a model-following variable stability control system (VSS) for in-flight simulation which consists of feedforward and feedback control laws, the aircraft dynamic model to be simulated, and switching and fader logics to reduce the transient effect between two aircraft dynamics. The separate design techniques for feedforward and feedback control law proposals are based on model matching and augmented linear quadratic (LQ) techniques. The system allows pilots to select and engage VSS mode, and when deselected, the aircraft reverts to the baseline flight control system. Both the baseline flight control laws and VSS control laws are computed continuously during flight. Initialization of the state values are necessary to prevent instability, since VSS control laws have integrators and filters in longitudinal, and lateral/directional axes. This paper demonstrates and validates the effectiveness and quality of VSS with F-16 models embedded in T-50 in-flight simulation aircraft.