• Title/Summary/Keyword: augmented error

Search Result 130, Processing Time 0.026 seconds

Augmented Quantum Short-Block Code with Single Bit-Flip Error Correction (단일 비트플립 오류정정 기능을 갖는 증강된 Quantum Short-Block Code)

  • Park, Dong-Young;Suh, Sang-Min;Kim, Baek-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • This paper proposes an augmented QSBC(Quantum Short-Block Code) that preserves the function of the existing QSBC and adds a single bit-flip error correction function due to Pauli X and Y errors. The augmented QSBC provides the diagnosis and automatic correction of a single Pauli X error by inserting additional auxiliary qubits and Toffoli gates as many as the number of information words into the existing QSBC. In this paper, the general expansion method of the augmented QSBC using seed vector and the realization method of the Toffoli gate of the single bit-flip error automatic correction function reflecting the scalability are also presented. The augmented QSBC proposed in this paper has a trade-off with a coding rate of at least 1/3 and at most 1/2 due to the insertion of auxiliary qubits.

The Effective Error Correction Method of a Camera in Monitor-based Augmented Reality Systems (모니터 기반 Augmented Reality 시스템에서 카메라 오차의 효율적인 보정 방법)

  • Kim, Juwan;Kim, Haedong;Jang, Byungtae;Kim, Donghyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.2
    • /
    • pp.35-43
    • /
    • 1997
  • In monitor-based AR(Augmented Reality) systems, it is required to know the position and direction of a camera in order to combine real images from a camera with virtual images exactly_ Because a tracker is parted from a camera, however, there is a registration error caused by the inconsistency of a tracker with a camera. In this paper, we describe the error correction method using genetic algorithm. This method looks for the position and direction of a camera using genetic algorithm and solves the error correction matrix of it. And then it is registered of the real images and the revised virtual image. It has an effect on the error correction caused by the misalignment of a tracker with a camera in complex AR systems.

  • PDF

Impact force localization for civil infrastructure using augmented Kalman Filter optimization

  • Saleem, Muhammad M.;Jo, Hongki
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • Impact forces induced by external object collisions can cause serious damages to civil engineering structures. While accurate and prompt identification of such impact forces is a critical task in structural health monitoring, it is not readily feasible for civil structures because the force measurement is extremely challenging and the force location is unpredictable for full-scale field structures. This study proposes a novel approach for identification of impact force including its location and time history using a small number of multi-metric observations. The method combines an augmented Kalman filter (AKF) and Genetic algorithm for accurate identification of impact force. The location of impact force is statistically determined in the way to minimize the AKF response estimate error at measured locations and then time history of the impact force is accurately constructed by optimizing the error co-variances of AKF using Genetic algorithm. The efficacy of proposed approach is numerically demonstrated using a truss and a plate model considering the presence of modelling error and measurement noises.

A modified adaptive control method for improving transient performance (적응 제어 시스템의 과도상태 성능 개선을 위한 제어기 설계)

  • Seo, Won-Gi;Lee, Jin-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.124-131
    • /
    • 1997
  • This paper presents a modified adaptive control scheme that improves the transient performance of the overall system while maintaining the asymptotic convergence of the output error. The proposed control scheme is characterized as the added outer dynamic feedback loop on the conventional adaptive control scheme. This control scheme enables various robust control methods that were developed for standard model reference adaptive controllers to be applied to the proposed controller. In contrast with the modified adaptive controllers that use augmented errors to provide additional dynamic feedback, the proposed controller uses tracking error directly, thereby reducing the tracking error significantly in the transient state and making the error insensitive to noise.

  • PDF

Integrated Navigation System Design of Electro-Optical Tracking System with Time-delay and Scale Factor Error Compensation

  • Son, Jae Hoon;Choi, Woojin;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2022
  • In order for electro-optical tracking system (EOTS) to have accurate target coordinate, accurate navigation results are required. If an integrated navigation system is configured using an inertial measurement unit (IMU) of EOTS and the vehicle's navigation results, navigation results with high rate can be obtained. Due to the time-delay of the navigation results of the vehicle in the EOTS and scale factor errors of the EOTS IMU in high-speed and high dynamic operation of the vehicle, it is much more difficult to have accurate navigation results. In this paper, an integrated navigation system of EOTS which compensates time-delay and scale factor error is proposed. The proposed integrated navigation system consists of vehicle's navigation system which provides time-delayed navigation results, an EOTS IMU, an inertial navigation system (INS), an augmented Kalman filter and integration Kalman filter. The augmented Kalman filter outputs navigation results, in which the time-delay of the vehicle's navigation results is compensated. The integration Kalman filter estimates position, velocity, attitude error of the EOTS INS and accelerometer bias, accelerometer scale factor error, gyro bias and gyro scale factor error from the difference between the output of the augmented Kalman filter and the navigation result of the EOTS INS. In order to check performance of the proposed integrated navigation system, simulations for output data of a measurement generator and land vehicle experiments were performed. The performance evaluation results show that the proposed integrated navigation system provides more accurate navigation results.

Speaker Identification Using Augmented PCA in Unknown Environments (부가 주성분분석을 이용한 미지의 환경에서의 화자식별)

  • Yu, Ha-Jin
    • MALSORI
    • /
    • no.54
    • /
    • pp.73-83
    • /
    • 2005
  • The goal of our research is to build a text-independent speaker identification system that can be used in any condition without any additional adaptation process. The performance of speaker recognition systems can be severely degraded in some unknown mismatched microphone and noise conditions. In this paper, we show that PCA(principal component analysis) can improve the performance in the situation. We also propose an augmented PCA process, which augments class discriminative information to the original feature vectors before PCA transformation and selects the best direction for each pair of highly confusable speakers. The proposed method reduced the relative recognition error by 21%.

  • PDF

Augmented Reality Algorithm Selection Scheme for Military Multiple Image Analysis (국방용 다중 영상분석 증강현실 알고리즘 선택기술)

  • Yoo, Heouk-kyun;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.55-61
    • /
    • 2019
  • In this paper, if images are acquired in all-time situations through various sensors (EO/IR, SAR, GMTI, LiDAR) used for defense purposes, the images can be analyzed and expressed in augmented reality(AR). Various algorithms are used to process images with augmented reality, and depending on the situation, it is necessary to decide which algorithms to select and use. Through the performance comparison (error rate, processing time, accuracy) of SIFT, SURF, ORB, and BRISK, the representative augmented reality algorithm, it is analyzed and proposed which augmented reality algorithm is effective to use under various situations in the defense field.

A Precise Tracking System for Dynamic Object using IR sensor for Spatial Augmented Reality (공간증강현실 구현을 위한 적외선 센서 기반 동적 물체 정밀 추적 시스템)

  • Oh, JiSoo;Park, Jinho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.115-122
    • /
    • 2017
  • As the era of the fourth industrial revolution began, augmented reality showed infinite possibilities throughout society. However, current augmented reality systems such as head-mount display and hand-held display systems suffer from various problems such as weariness and nausea, and thus space-augmented reality, which is a projector-based augmented reality technology, is attracting attention. Spacial augmented reality requires precise tracking of dynamic objects to project virtual images in order to increase realism of augmented reality and induce user 's immersion. The infrared sensor-based precision tracking algorithm developed in this paper demonstrates very robust tracking performance with an average error rate of less than 1.5% and technically opens the way towards advanced augmented reality technologies such as tracking for arbitrary objects, and Socially, by easy-to-use tracking algorithms for non-specialists, it allows designers, students, and children to easily create and enjoy their own augmented reality content.

Development of Augmented Reality Walking Navigation App using Dijkstra Algorithm

  • Jeong, Cho-Hui;Lee, Myung-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • There are a variety of apps that are finding their way. And in car navigation, we launched a product that reflects Augmented Reality technology this year. However, existing apps have problems. It is implemented in 2D or 3D, has a large error range because it has been modified in most vehicles, is not updated in real time, and car augmented reality navigation is a vehicle, and a separate device is required, etc. In this study, we implemented a smartphone app for walking directions using augmented reality, and made it possible to intuitively use a route service from a user 's location to a destination. The Dijkstra algorithm is applied to calculate the shortest path to solve the problem of finding the route with the least cost. By using this application, it is possible to use the route search service even in a data-free environment, to solve the inconvenience of the language barrier, and to update in real time, so that the latest information can be always maintained. In the future, we want to develop an app that can be commercialized by using a character in the path to promote it.

Measurement Time-Delay Compensation and Initial Attitude Determination of Electro-Optical Tracking System Using Augmented Kalman Filter (Augmented 칼만 필터를 이용한 전자광학 추적 장비의 측정치 시간지연 보상과 초기 자세 결정)

  • Son, Jae Hoon;Choi, Woo Jin;Kim, Sung-Su;Oh, Sang Heon;Lee, Sang Jeong;Hwang, Dong-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1589-1597
    • /
    • 2021
  • Due to the low output rate and time delay of vehicle's navigation results, the electro-optical tracking system(EOTS) cannot estimate accurate target positions. If an inertial measurement unit(IMU) is additionally mounted into the EOTS and inertial navigation system(INS) is constructed, the high navigation output rate can be obtained. And the time-delay can be compensated by using the augmented Kalman filter. An accurate initial attitude is required in order to have accurate navigation outputs. In this paper, an attitude determination algorithm is proposed using the augmented Kalman filter in order to compensate measurement delay of the EOTS and have accurate initial attitude. The proposed initial attitude determination algorithm consists of an augmented Kalman filter, an INS, and an integrated Kalman filter. The augmented Kalman filter compensates the time-delay of the vehicle's navigation results and the integrated Kalman filter estimates the navigation error of the INS. In order to evaluate performance of the proposed algorithm, vehicle's navigation outputs and IMU measurements were generated using sensors' model-based measurement generator and initial attitude estimation errors of the proposed algorithm and the conventional algorithm without the augmented Kalman filter were compared for the generated measurements. The evaluation results show that the proposed algorithm has better accuracy.