DOI QR코드

DOI QR Code

Augmented Quantum Short-Block Code with Single Bit-Flip Error Correction

단일 비트플립 오류정정 기능을 갖는 증강된 Quantum Short-Block Code

  • 박동영 (강릉원주대학교 정보통신공학과) ;
  • 서상민 (강릉원주대학교 정보통신공학과) ;
  • 김백기 (강릉원주대학교 정보통신공학과)
  • Received : 2021.11.16
  • Accepted : 2022.02.17
  • Published : 2022.02.28

Abstract

This paper proposes an augmented QSBC(Quantum Short-Block Code) that preserves the function of the existing QSBC and adds a single bit-flip error correction function due to Pauli X and Y errors. The augmented QSBC provides the diagnosis and automatic correction of a single Pauli X error by inserting additional auxiliary qubits and Toffoli gates as many as the number of information words into the existing QSBC. In this paper, the general expansion method of the augmented QSBC using seed vector and the realization method of the Toffoli gate of the single bit-flip error automatic correction function reflecting the scalability are also presented. The augmented QSBC proposed in this paper has a trade-off with a coding rate of at least 1/3 and at most 1/2 due to the insertion of auxiliary qubits.

본 논문은 기존 QSBC(Quantum Short-Block Code)의 기능은 보전하면서 파울리 X 및 Y 오류에 의한 단일 비트플립 오류정정 기능을 부가한 증강된 QSBC를 제안한다. 증강된 QSBC는 기존 QSBC에 정보워드 수만큼의 추가적인 보조 큐비트와 Toffoli 게이트를 삽입해 단일 파울리 X 오류의 진단과 자동정정 기능을 부여한 것이다. 본 논문은 종자 벡터를 이용한 증강된 QSBC의 일반적 확장 방법과 확장성을 반영한 단일 비트플립오류 자동정정 함수의 Toffoli 게이트 실현 방법도 제시하였다. 본 논문이 제안한 증강된 QSBC는 보조 큐비트 삽입으로 인해 코딩률이 최소 1/3과 최대 1/2인 trade-off를 갖는다.

Keywords

References

  1. Z. Babar, P. Botsinis, D.Alanis, S. X. Ng, and L. Hanjo, "The Road From Classical to Quantum Codes : A Hashing Bound Approaching Design Procedure," IEEE Access, vol. 3, 2015, pp. 146-176. https://doi.org/10.1109/ACCESS.2015.2405533
  2. D. Chandra, Z. Babar, S. X. Ng, and L. Hanjo, "Near-Hashing-Bound Multiple-Rate Quantum Turbo Short-Block Codes," IEEE Access, vol. 7, 2019, pp. 52712-52730. https://doi.org/10.1109/access.2019.2911515
  3. M. M. Wilde, M. H. Hsieh, and Z. Babar, "Entanglement-Assisted Quantum Turbo Codes," IEEE J. of Trans. on Information Theory, vol. 60, no. 2, 2014, pp. 1203-222. https://doi.org/10.1109/TIT.2013.2292052
  4. Z. Babar, D. Chandra, H. V. Nguyen, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanjo, "Duality of Quantum and Classical Error Correction Codes : Design Principles and Examples," IEEE Communications Surveys & Tutorials, vol. 21, no. 1, 2019, pp. 970-1010. https://doi.org/10.1109/COMST.2018.2861361
  5. P. W. Shor, "Scheme for reducing decoherence in quantum computer memory," Phys. Rev. A, Gen. Phys., vol. 52, no. 4, 1995. pp. R.2493-2496. https://doi.org/10.1103/PhysRevA.52.R2493
  6. D. Park and B. Kim, "New QECCs for Multiple Flip Error Correction," J. of the Korea Institute of Electronic Communication Science, vol. 14, no. 5, 2019, pp. 907-916.
  7. R. Laflamme, C. Miquel, J. Paz, and W. Zurek, "Perfect Quantum Error Correction Code," Phys. Rev. Lett. 77, 1 July 1996, pp. 198-201. https://doi.org/10.1103/PhysRevLett.77.198
  8. R. Anitha and Dr. B. Vijayalakshmi, "Simulation of quantum encoder & decoder with flip bit error correction using reversible quantum gates," 2018 Int. Conf. on Recent Trends in Electrical, Control and Communication (RTECC), Selangor, Malaysia, Mar. 2018, pp. 99-102.
  9. D. Park, "A New Function Embedding Method for the Multiple-Controlled Unitary Gate based on Literal Switch," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 1, 2017, pp. 101-107. https://doi.org/10.13067/JKIECS.2017.12.1.101
  10. D. Park,"Function Embedding and Projective Measurement of Quantum Gate by Probability Amplitude Switch," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 6, 2017, pp. 1027-1034. https://doi.org/10.13067/JKIECS.2017.12.6.1027