• Title/Summary/Keyword: attribute recognition model

Search Result 20, Processing Time 0.023 seconds

Compromised feature normalization method for deep neural network based speech recognition (심층신경망 기반의 음성인식을 위한 절충된 특징 정규화 방식)

  • Kim, Min Sik;Kim, Hyung Soon
    • Phonetics and Speech Sciences
    • /
    • v.12 no.3
    • /
    • pp.65-71
    • /
    • 2020
  • Feature normalization is a method to reduce the effect of environmental mismatch between the training and test conditions through the normalization of statistical characteristics of acoustic feature parameters. It demonstrates excellent performance improvement in the traditional Gaussian mixture model-hidden Markov model (GMM-HMM)-based speech recognition system. However, in a deep neural network (DNN)-based speech recognition system, minimizing the effects of environmental mismatch does not necessarily lead to the best performance improvement. In this paper, we attribute the cause of this phenomenon to information loss due to excessive feature normalization. We investigate whether there is a feature normalization method that maximizes the speech recognition performance by properly reducing the impact of environmental mismatch, while preserving useful information for training acoustic models. To this end, we introduce the mean and exponentiated variance normalization (MEVN), which is a compromise between the mean normalization (MN) and the mean and variance normalization (MVN), and compare the performance of DNN-based speech recognition system in noisy and reverberant environments according to the degree of variance normalization. Experimental results reveal that a slight performance improvement is obtained with the MEVN over the MN and the MVN, depending on the degree of variance normalization.

Design of Standard Data Model for the Informatization of Signboards (간판의 정보화를 위한 표준 데이터 모델 설계)

  • Kwon, Sang Il;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.197-209
    • /
    • 2020
  • Signboards are installed in different types and sizes depending on the shop characteristics. However, the local government is having difficulty managing signboards with frequent opening and closing of stores and insufficient management personnel. In this study, a methodology was proposed to standardize and efficiently manage signboard information. To this end, the signboard display method of the enforcement ordinance related to outdoor advertising was analyzed to define the attribute elements of standard signboard data. In addition, physical information of signboards was obtained through signboard recognition technology, which is a prior study, and attribute elements of signboard standard data were defined through information that can be read with the naked eye, building integration information of the Ministry of the Interior and Safety, and street name address. In order to standardize the signboard information by spatial characteristics, data product specifications and metadata were defined according to the national spatial information standard. Lastly, standard data for signboards were produced in XML (Extensible Markup Language) format for compatibility, and XSD (XML Schema Definition) was defined for XML integrity so that data validity could be verified. Through this, a standard data model for the informatization of signboards was designed.

Process Evaluation Model based on Goal-Scenario for Business Activity Monitoring

  • Baek, Su-Jin;Song, Young-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.379-384
    • /
    • 2011
  • The scope of the problems that could be solved by monitoring and the improvement of the recognition time is directly correlated to the performance of the management function of the business process. However, the current monitoring process of business activities decides whether to apply warnings or not by assuming a fixed environment and showing expressions based on the design rules. Also, warnings are applied by carrying out the measuring process when the event attribute values are inserted at every point. Therefore, there is a limit for distinguishing the range of occurrence and the level of severity in regard to the new external problems occurring in a complicated environment. Such problems cannot be ed. Also, since it is difficult to expand the range of problems which can be possibly evaluated, it is impossible to evaluate any unexpected situation which could occur in the execution period. In this paper, a process-evaluating model based on the goal scenario is suggested to provide constant services through the current monitoring process in regard to the service demands of the new scenario which occurs outside. The new demands based on the outside situation are analyzed according to the goal scenario for the process activities. Also, by using the meta-heuristic algorithm, a similar process model is found and identified by combining similarity and interrelationship. The process can be stopped in advance or adjusted to the wanted direction.

Represented by the Color Image Emotion Emotional Attributes of Size, Quantification Algorithm (이미지의 색채 감성속성을 이용한 대표감성크기 정량화 알고리즘)

  • Lee, Yean-Ran
    • Cartoon and Animation Studies
    • /
    • s.39
    • /
    • pp.393-412
    • /
    • 2015
  • See and feel the emotion recognition is the image of a person variously changed according to the environment, personal disposition. Thus, the image recognition has been focused on the emotional sensibilities computer you want to control the number studies. However, existing emotional computing model is numbered and the objective is clearly insufficient measurement conditions. Thus, through quantifiable image Emotion Recognition and emotion computing, is a study of the situation requires an objective assessment scheme. In this paper, the sensitivity was represented by numbered sizes quantified according to the image recognition calculation emotion. So apply the principal attributes of the color image emotion recognition as a configuration parameter. In addition, in calculating the color sensitivity by applying a digital computing focused research. Image color emotion computing research approach is the color of emotion attribute, brightness, and saturation reflects the weighted according to importance to the emotional scores. And free-degree by applying the sensitivity point to the image sensitivity formula (X), the tone (Y-axis) is calculated as a number system. There pleasure degree (X-axis), the tension and position the position of the image point that the sensitivity of the emotional coordinate crossing (Y-axis). Image color coordinates by applying the core emotional effect of Russell (Core Affect) is based on the 16 main representatives emotion. Thus, the image recognition sensitivity and compares the number size. Depending on the magnitude of the sensitivity scores demonstrate this sensitivity must change. Compare the way the images are divided up the top five of emotion recognition emotion emotions associated with 16 representatives, and representatives analyzed the concentrated emotion sizes. Future studies are needed emotional computing method of calculation to be more similar sensibility and human emotion recognition.

Cyber Threat Intelligence Traffic Through Black Widow Optimisation by Applying RNN-BiLSTM Recognition Model

  • Kanti Singh Sangher;Archana Singh;Hari Mohan Pandey
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.99-109
    • /
    • 2023
  • The darknet is frequently referred to as the hub of illicit online activity. In order to keep track of real-time applications and activities taking place on Darknet, traffic on that network must be analysed. It is without a doubt important to recognise network traffic tied to an unused Internet address in order to spot and investigate malicious online activity. Any observed network traffic is the result of mis-configuration from faked source addresses and another methods that monitor the unused space address because there are no genuine devices or hosts in an unused address block. Digital systems can now detect and identify darknet activity on their own thanks to recent advances in artificial intelligence. In this paper, offer a generalised method for deep learning-based detection and classification of darknet traffic. Furthermore, analyse a cutting-edge complicated dataset that contains a lot of information about darknet traffic. Next, examine various feature selection strategies to choose a best attribute for detecting and classifying darknet traffic. For the purpose of identifying threats using network properties acquired from darknet traffic, devised a hybrid deep learning (DL) approach that combines Recurrent Neural Network (RNN) and Bidirectional LSTM (BiLSTM). This probing technique can tell malicious traffic from legitimate traffic. The results show that the suggested strategy works better than the existing ways by producing the highest level of accuracy for categorising darknet traffic using the Black widow optimization algorithm as a feature selection approach and RNN-BiLSTM as a recognition model.

Performance Comparison of Clustering using Discritization Algorithm (이산화 알고리즘을 이용한 계층적 클러스터링의 실험적 성능 평가)

  • Won, Jae Kang;Lee, Jeong Chan;Jung, Yong Gyu;Lee, Young Ho
    • Journal of Service Research and Studies
    • /
    • v.3 no.2
    • /
    • pp.53-60
    • /
    • 2013
  • Datamining from the large data in the form of various techniques for obtaining information have been developed. In recent years one of the most sought areas of pattern recognition and machine learning method is created with most of existing learning algorithms based on categorical attributes to a rule or decision model. However, the real-world data, it may consist of numeric attributes in many cases. In addition it contains attributes with numerical values to the normal categorical attribute. In this case, therefore, it is required processes in order to use the data to learn an appropriate value for the type attribute. In this paper, the domain of the numeric attributes are divided into several segments using learning algorithm techniques of discritization. It is described Clustering with other data mining techniques. Large amount of first cluster with characteristics is similar records from the database into smaller groups that split multiple given finite patterns in the pattern space. It is close to each other of a set of patterns that together make up a bunch. Among the set without specifying a particular category in a given data by extracting a pattern. It will be described similar grouping of data clustering technique to classify the data.

  • PDF

A Study on Extraction of Useful Information from Big dataset of Multi-attributes - Focus on Single Household in Seoul - (다속성 빅데이터로부터 유용한 정보 추출에 관한 연구 - 서울시 1인 가구를 중심으로 -)

  • Choi, Jung-Min;Kim, Kun-Woo
    • Journal of the Korean housing association
    • /
    • v.25 no.4
    • /
    • pp.59-72
    • /
    • 2014
  • This study proposes a data-mining analysis method for examining variable multi-attribute big-data, which is considered to be more applicable in social science using a Correspondence Analysis of variables obtained by AIC model selection. The proposed method was applied on the Seoul Survey from 2005 to 2010 in order to extract interesting rules or patterns on characteristics of single household. The results found as follows. Firstly, this paper illustrated that the proposed method is efficiently able to apply on a big dataset of huge categorical multi attributes variables. Secondly, as a result of Seoul Survey analysis, it has been found that the more dissatisfied with residential environment the higher tendency of residential mobility in single household. Thirdly, it turned out that there are three types of single households based on the characteristics of their demographic characteristics, and it was different from recognition of home and partner of counselling by the three types of single households. Fourthly, this paper extracted eight significant variables with a spatial aggregated dataset which are highly correlated to the ratio of occupancy of single household in 25 Seoul Municipals, and to conclude, it investigated the relation between spatial distribution of single households and their demographic statistics based on the six divided groups obtained by Cluster Analysis.

The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce (온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안)

  • Kim, Kitae;Oh, Wonseok;Lim, Geunwon;Cha, Eunwoo;Shin, Minyoung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.1-23
    • /
    • 2018
  • From the 21st century, various high-quality services have come up with the growth of the internet or 'Information and Communication Technologies'. Especially, the scale of E-commerce industry in which Amazon and E-bay are standing out is exploding in a large way. As E-commerce grows, Customers could get what they want to buy easily while comparing various products because more products have been registered at online shopping malls. However, a problem has arisen with the growth of E-commerce. As too many products have been registered, it has become difficult for customers to search what they really need in the flood of products. When customers search for desired products with a generalized keyword, too many products have come out as a result. On the contrary, few products have been searched if customers type in details of products because concrete product-attributes have been registered rarely. In this situation, recognizing texts in images automatically with a machine can be a solution. Because bulk of product details are written in catalogs as image format, most of product information are not searched with text inputs in the current text-based searching system. It means if information in images can be converted to text format, customers can search products with product-details, which make them shop more conveniently. There are various existing OCR(Optical Character Recognition) programs which can recognize texts in images. But existing OCR programs are hard to be applied to catalog because they have problems in recognizing texts in certain circumstances, like texts are not big enough or fonts are not consistent. Therefore, this research suggests the way to recognize keywords in catalog with the Deep Learning algorithm which is state of the art in image-recognition area from 2010s. Single Shot Multibox Detector(SSD), which is a credited model for object-detection performance, can be used with structures re-designed to take into account the difference of text from object. But there is an issue that SSD model needs a lot of labeled-train data to be trained, because of the characteristic of deep learning algorithms, that it should be trained by supervised-learning. To collect data, we can try labelling location and classification information to texts in catalog manually. But if data are collected manually, many problems would come up. Some keywords would be missed because human can make mistakes while labelling train data. And it becomes too time-consuming to collect train data considering the scale of data needed or costly if a lot of workers are hired to shorten the time. Furthermore, if some specific keywords are needed to be trained, searching images that have the words would be difficult, as well. To solve the data issue, this research developed a program which create train data automatically. This program can make images which have various keywords and pictures like catalog and save location-information of keywords at the same time. With this program, not only data can be collected efficiently, but also the performance of SSD model becomes better. The SSD model recorded 81.99% of recognition rate with 20,000 data created by the program. Moreover, this research had an efficiency test of SSD model according to data differences to analyze what feature of data exert influence upon the performance of recognizing texts in images. As a result, it is figured out that the number of labeled keywords, the addition of overlapped keyword label, the existence of keywords that is not labeled, the spaces among keywords and the differences of background images are related to the performance of SSD model. This test can lead performance improvement of SSD model or other text-recognizing machine based on deep learning algorithm with high-quality data. SSD model which is re-designed to recognize texts in images and the program developed for creating train data are expected to contribute to improvement of searching system in E-commerce. Suppliers can put less time to register keywords for products and customers can search products with product-details which is written on the catalog.

A Study on Perceived Quality affecting the Service Personal Value in the On-off line Channel - Focusing on the moderate effect of the need for cognition - (온.오프라인 채널에서 지각된 품질이 서비스의 개인가치에 미치는 영향에 관한 연구 -인지욕구의 조정효과를 중심으로-)

  • Sung, Hyung-Suk
    • Journal of Distribution Research
    • /
    • v.15 no.3
    • /
    • pp.111-137
    • /
    • 2010
  • The basic purpose of this study is to investigate perceived quality and service personal value affecting the result of long-term relationship between service buyers and suppliers. This research presented a constructive model(perceived quality affecting the service personal value and the moderate effect of NFC) in the on off line and then propose the research model base on prior researches and studies about relationships among components of service. Data were gathered from respondents who visit at the education service market. For this study, Data were analyzed by AMOS 7.0. We integrate the literature on services marketing with researches on personal values and perceived quality. The SERPVAL scale presented here allows for the creation of a common ground for assessing service personal values, giving a clear understanding of the key value dimensions behind service choice and usage. It will lead to a focus of future research in services marketing, extending knowledge in the field and stimulating further empirical research on service personal values. At the managerial level, as a tool the SERPVAL scale should allow practitioners to evaluate and improve the value of a service, and consequently, to define strategies and actions to address services for customers based on their fundamental personal values. Through qualitative and empirical research, we find that the service quality construct conforms to the structure of a second-order factor model that ties service quality perceptions to distinct and actionable dimensions: outcome, interaction, and environmental quality. In turn, each has two subdimensions that define the basis of service quality perceptions. The authors further suggest that for each of these subdimensions to contribute to improved service quality perceptions, the quality received by consumers must be perceived to be reliable, responsive, and empathetic. Although the service personal value may be found in researches that explore individual values and their consequences for consumer behavior, there is no established operationalization of a SERPVAL scale. The inexistence of an established scale, duly adapted in order to understand and analyze personal values behind services usage, exposes the need of a measurement scale with such a purpose. This need has to be rooted, however, in a conceptualization of the construct being scaled. Service personal values can be defined as a customer's overall assessment of the use of a service based on the perception of what is achieved in terms of his own personal values. As consumer behaviors serve to show an individual's values, the use of a service can also be a way to fulfill and demonstrate consumers'personal values. In this sense, a service can provide more to the customer than its concrete and abstract attributes at both the attribute and the quality levels, and more than its functional consequences at the value level. Both values and services literatures agree, that personal value is the highest-level concept, followed by instrumental values, attitudes and finally by product attributes. Purchasing behaviors are agreed to be the end result of these concepts' interaction, with personal values taking a major role in the final decision process. From both consumers' and practitioners' perspectives, values are extremely relevant, as they are desirable goals that serve as guiding principles in people's lives. While building on previous research, we propose to assess service personal values through three broad groups of individual dimensions; at the self-oriented level, we use (1) service value to peaceful life (SVPL) and, at the social-oriented level, we use (2) service value to social recognition (SVSR), and (3) service value to social integration (SVSI). Service value to peaceful life is our first dimension. This dimension emerged as a combination of values coming from the RVS scale, a scale built specifically to assess general individual values. If a service promotes a pleasurable life, brings or improves tranquility, safety and harmony, then its user recognizes the value of this service. Generally, this service can improve the user's pleasure of life, since it protects or defends the consumer from threats to life or pressures on it. While building upon both the LOV scale, a scale built specifically to assess consumer values, and the RVS scale for individual values, we develop the other two dimensions: SVSR and SVSI. The roles of social recognition and social integration to improve service personal value have been seriously neglected. Social recognition derives its outcome utility from its predictive utility. When applying this underlying belief to our second dimension, SVSR, we assume that people use a service while taking into consideration the content of what is delivered. Individuals consider whether the service aids in gaining respect from others, social recognition and status, as well as whether it allows achieving a more fulfilled and stimulating life, which might then be revealed to others. People also tend to engage in behavior that receives social recognition and to avoid behavior that leads to social disapproval, and this contributes to an individual's social integration. This leads us to the third dimension, SVSI, which is based on the fact that if the consumer perceives that a service strengthens friendships, provides the possibility of becoming more integrated in the group, or promotes better relationships at the social, professional or family levels, then the service will contribute to social integration, and naturally the individual will recognize personal value in the service. Most of the research in business values deals with individual values. However, to our knowledge, no study has dealt with assessing overall personal values as well as their dimensions in a service context. Our final results show that the scales adapted from the Schwartz list were excluded. A possible explanation is that although Schwartz builds on Rokeach work in order to explore individual values, its dimensions might be especially focused on analyzing societal values. As we are looking for individual dimensions, this might explain why the values inspired by the Schwartz list were excluded from the model. The hierarchical structure of the final scale presented in this paper also presents theoretical implications. Although we cannot claim to definitively capture the dimensions of service personal values, we believe that we come close to capturing these overall evaluations because the second-order factor extracts the underlying commonality among dimensions. In addition to obtaining respondents' evaluations of the dimensions, the second-order factor model captures the common variance among these dimensions, reflecting the respondents' overall assessment of service personal values. Towards this fact, we expect that the service personal values conceptualization and measurement scale presented here contributes to both business values literature and the service marketing field, allowing for the delineation of strategies for adding value to services. This new scale also presents managerial implications. The SERPVAL dimensions give some guidance on how to better pursue a highly service-oriented business strategy. Indeed, the SERPVAL scale can be used for benchmarking purposes, as this scale can be used to identify whether or not a firms' marketing strategies are consistent with consumers' expectations. Managerial assessment of the personal values of a service might be extremely important because it allows managers to better understand what customers want or value. Thus, this scale allows us to identify what services are really valuable to the final consumer; providing knowledge for making choices regarding which services to include. Traditional approaches have focused their attention on service attributes (as quality) and service consequences(as service value), but personal values may be an important set of variables to be considered in understanding what attracts consumers to a certain service. By using the SERPVAL scale to assess the personal values associated with a services usage, managers may better understand the reasons behind services' usage, so that they may handle them more efficiently. While testing nomological validity, our empirical findings demonstrate that the three SERPVAL dimensions are positively and significantly associated with satisfaction. Additionally, while service value to social integration is related only with loyalty, service value to peaceful life is associated with both loyalty and repurchase intent. It is also interesting and surprising that service value to social recognition appears not to be significantly linked with loyalty and repurchase intent. A possible explanation is that no mobile service provider has yet emerged in the market as a luxury provider. All of the Portuguese providers are still trying to capture market share by means of low-end pricing. This research has implications for consumers as well. As more companies seek to build relationships with their customers, consumers are easily able to examine whether these relationships provide real value or not to their own lives. The selection of a strategy for a particular service depends on its customers' personal values. Being highly customer-oriented means having a strong commitment to customers, trying to create customer value and understanding customer needs. Enhancing service distinctiveness in order to provide a peaceful life, increase social recognition and gain a better social integration are all possible strategies that companies may pursue, but the one to pursue depends on the outstanding personal values held by the service customers. Data were gathered from 284 respondents in the korean discount store and online shopping mall market. This research proposed 3 hypotheses on 6 latent variables and tested through structural equation modeling. 6 alternative measurements were compared through statistical significance test of the 6 paths of research model and the overall fitting level of structural equation model. and the result was successful. and Perceived quality more positively influences service personal value when NFC is high than when no NFC is low in the off-line market. The results of the study indicate that service quality is properly modeled as an antecedent of service personal value. We consider the research and managerial implications of the study and its limitations. In sum, by knowing the dimensions a consumer takes into account when choosing a service, a better understanding of purchasing behaviors may be realized, guiding managers toward customers expectations. By defining strategies and actions that address potential problems with the service personal values, managers might ultimately influence their firm's performance. we expect to contribute to both business values and service marketing literatures through the development of the service personal value. At a time when marketing researchers are challenged to provide research with practical implications, it is also believed that this framework may be used by managers to pursue service-oriented business strategies while taking into consideration what customers value.

  • PDF

A Study on Kiosk Satisfaction Level Improvement: Focusing on Kano, Timko, and PCSI Methodology (키오스크 소비자의 만족수준 연구: Kano, Timko, PCSI 방법론을 중심으로)

  • Choi, Jaehoon;Kim, Pansoo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.4
    • /
    • pp.193-204
    • /
    • 2022
  • This study analyzed the degree of influence of measurement and improvement of customer satisfaction level targeting kiosk users. In modern times, due to the development of technology and the improvement of the online environment, the probability that simple labor tasks will disappear after 10 years is close to 90%. Even in domestic research, it is predicted that 'simple labor jobs' will disappear due to the influence of advanced technology with a probability of about 36%. there is. In particular, as the demand for non-face-to-face services increases due to the Corona 19 virus, which is recently spreading globally, the trend of introducing kiosks has accelerated, and the global market will grow to 83.5 billion won in 2021, showing an average annual growth rate of 8.9%. there is. However, due to the unmanned nature of these kiosks, some consumers still have difficulties in using them, and consumers who are not familiar with the use of these technologies have a negative attitude towards service co-producers due to rejection of non-face-to-face services and anxiety about service errors. Lack of understanding leads to role conflicts between sales clerks and consumers, or inequality is being created in terms of service provision and generations accustomed to using technology. In addition, since kiosk is a representative technology-based self-service industry, if the user feels uncomfortable or requires additional labor, the overall service value decreases and the growth of the kiosk industry itself can be suppressed. It is important. Therefore, interviews were conducted on the main points of direct use with actual users centered on display color scheme, text size, device design, device size, internal UI (interface), amount of information, recognition sensor (barcode, NFC, etc.), Display brightness, self-event, and reaction speed items were extracted. Afterwards, using the questionnaire, the Kano model quality attribute classification of each expected evaluation item was carried out, and Timko's customer satisfaction coefficient, which can be calculated with accurate numerical values The PCSI Index analysis was additionally performed to determine the improvement priorities by finally classifying the improvement impact of the kiosk expected evaluation items through research. As a result, the impact of improvement appears in the order of internal UI (interface), text size, recognition sensor (barcode, NFC, etc.), reaction speed, self-event, display brightness, amount of information, device size, device design, and display color scheme. Through this, we intend to contribute to a comprehensive comparison of kiosk-based research in each field and to set the direction for improvement in the venture industry.