• Title/Summary/Keyword: attractive force

Search Result 187, Processing Time 0.028 seconds

Hydrate Researches in the flow assurance (가스 하이드레이트와 파이프라인 유동 안정성)

  • Kim, Yong-Heon;Yang, Sung-Oh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.425-428
    • /
    • 2006
  • Natural gas hydrate has been a major problem for its plugging nature in the pipeline. With the demand of deep-water production, the importance of flow assurance technology, preventing hydrate, asphaltene and wax in the pipeline becomes bigger Kinetic models combined with the flow simulator are being developed to explain the nature of hydrate plug formation in the pipeline. To simulate the hydrate plug formation, each stage including the nucleation, growth and agglomeration should be considered. The hydrate nucleation is known to be stochastic and is believed hard to be predicted. Recent publications showed hydrate growth and agglomeration can be observed rigorously using a particle size analyzer. However properties of the hydrate should be investigated to model the growth and agglomeration. The attractive force between hydrate particles, supposed to be the capillary force, was revealed to be stochastic. Alternative way to model the hydrate agglomeration is to simulate by the discrete element method. Those parameters, particle size distribution, attractive force, and growth rate are embedded into the kinetic model which is combined Into the flow simulator. When compared with the flowloop experimental data, hydrate kinetic model combined into a flow simulator showed good results. With the early results, the hydrate kinetic model is promising but needs more efforts to improve it.

  • PDF

Collision Avoidance for UAV using Potential Field based on Relative Velocity of Obstacles (장애물의 상대속도를 반영한 포텐셜필드 기반 무인항공기 충돌회피)

  • Ahn, Seung-gyu;Lee, Dongjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.47-53
    • /
    • 2018
  • In this paper, we investigate a collision avoidance algorithm for unmanned aerial vehicles using potential field based on the relative velocity of obstacles. The potential field consists of the attraction force and the repulsive force that are generated for the target and the obstacles. And the field can be classified into the attractive potential field generated by the target and the repulsive potential field generated by the obstacle, respectively. In this study, we construct an attractive potential field as a function of the distance between the UAV and the target position. On the other hand, a repulsive potential field is created by a function of distance and the relative velocity of the obstacle with respect to the UAV. The proposed potential field based collision avoidance algorithm is evaluate through simulations.

On the strong attractive force dependence of the surface phase transition : Qualitative consideration from the occupation statistics (표면상변이의 강인력 의존성 : 점유통계를 이용한 정성적 고찰)

  • 김철호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.573-577
    • /
    • 1997
  • Surface phase transition is known to be observed at the system that there exists a strong attractive potential between particles adsorbed. This study presents a dependence of the surface phase transition on strong attractive force using a simple occupation statistical method. It was found that the system exhibits a phase transition from the vacuum phase into the population phase and the critical pressure also increases with the temperature. This fact indicates that these results explain well qualitatively the surface phase transition.

  • PDF

Study on the Noise Reduction in the Rotary Compressor Using BLDC Motor (BLDC 모터를 적용한 로터리 컴프레서 소음 저감에 관한 연구)

  • Kim, Jin-Soo;Lim, Kyung-Nae;Ku, Se-Jin;Lee, Jang-Woo;Jeon, Si-Moon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.920-929
    • /
    • 2008
  • The main noise and vibration source of the BLDC rotary compressor for air conditioner was analyzed by using the measurement of noise and vibration, noise contour, and experimental modal analysis. The source is presumed to the mechanical resonance excited by the electromagnetic attractive force of the BLDC motor. To reduce the excessive noise of the BLDC rotary compressor due to the mechanical resonance, air-gap enlargement and structural dynamic modification were applied in this paper. Its validations were conducted by the analysis of the electromagnetic attractive force which is generated by the BLDC motor and by the measurement of noise and vibration of the BLDC rotary compressor. By enlarging the length of air-gap and conducting the structural dynamic modification, the noise and vibration in the compressor was significantly improved by 4.5 dB(A) and 56 percent, respectively.

Regenerative Braking Characteristics of Linear induction Motor for MAGLEV (자기부상열차용 선형유도전동기의 회생 제동 특성 해석)

  • Park, Seung-Chan;Lee, Won-Min;Kim, Jung-Cheol;Park, Yeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1866-1870
    • /
    • 2008
  • In this paper, electric braking performances of linear induction motor(LIM) designed for propelling the MAGLEV are presented. Regenerative braking is carried out from 110km/h to 20km/h, and plugging which converts the direction of travelling magnetic field is carried out in the low speed region below 20km/h. It is important to reduce attractive force which can affect the magnetic levitation load during regenerative braking or plugging operation mode. So in this paper the braking performances are analyzed by finite element method. As a result, braking force, attractive force, phase current, voltage to frequency patterns and its magnetic fields of braking LIM are presented.

  • PDF

Navigation Technique of Unmanned Vehicle Using Potential Field Method (포텐셜 필드 기법을 이용한 무인차량의 자율항법 개발)

  • Lee, Sang-Won;Moon, Young-Geun;Kim, Sung-Hyun;Lee, Min-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.8-15
    • /
    • 2011
  • This paper proposes a real-time navigation algorithm which integrates the artificial potential field (APF) for an unmanned vehicle in the unknown environment. This approach uses repulsive potential function around the obstacles to force the vehicle away and an attractive potential function around the goal to attract the vehicle. In this research, laser range finder is used as range sensor. An obstacle detected by the sensor creates repulsive vector. Differential global positioning system (DGPS) and digital compass are used to measure the current vehicle position and orientation. The measured vehicle position is also used to create attractive vector. This paper proposes a new concept of potential field based navigation which controls unmanned vehicle's speed and steering. The magnitude of repulsive force based on the proposed algorithm is designed not to be over the magnitude of attractive force while the magnitude is increased linearly as being closer to obstacle. Consequently, the vehicle experiences a generalized force toward the negative gradient of the total potential. This force drives the vehicle downhill towards its goal configuration until the vehicle reaches minimum potential and it stops. The effectiveness of the proposed APF for unmanned vehicle is verified through simulation and experiment.

Local Collision Avoidance of Multiple Robots Using Avoidability Measure and Relative Distance

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.132-144
    • /
    • 2004
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the velocity of the robots. To implement the concept to avoid collision among multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. These repulsive force and attractive force are added to form the driving force for robot motion. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, since the usual potential field method initiates avoidance motion later than the proposed method, it sometimes fails preventing collision or causes hasty motion to avoid other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.

Superconducting magnetic Foce (초전도에 작용하는 자기 Force)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.349-350
    • /
    • 2009
  • Superconducting magnetic bearing and rotating system were developed by utilizing the high magnetization YBaCuO superconductor. The pellets prepared by quasi-melt process had a high magnetic levitation force and a high magnetic attractive force. The shaft also could be moves its position and orientation of the rotating axis freely. Is is essential to enhance the materials properties and to improve the system design for the application of the system to industrial purpose.

  • PDF

Investigation of Cogging Effect in Bisymmetric Dual Iron Core Linear Motor Stage (대칭구조 철심형 리니어모터 이송계에서의 코깅현상에 관한 연구)

  • Oh, Jeong-Seok;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.115-121
    • /
    • 2008
  • This paper presents bisymmetric dual iron core lineal motor stage for heavy-duty high precision applications such as large area micro-grooving machines or high precision roll die machines. In this stage, two iron core linear motors are installed in laterally symmetric way to cancel out the attractive forces. Main focus was given to analyzing the effect of cogging force and moment for two different layouts, which are symmetric and half-pitch shifted ones. Experimental results showed that the symmetric layout is more adequate for high precision applications because of its clear moment cancellation effect. It was also verified that the effect of the residual cogging moment can be suppressed further by increasing the bearing stiffness. One problem of the symmetric layout is added cogging force which hinders smooth motion, but its effect was relatively small compared with that of moment cancellation.