• Title/Summary/Keyword: attitude error detection

Search Result 14, Processing Time 0.025 seconds

Attitude Error Detection with Sun sensor on a Rotating Solar Array (회전하는 태양전지판에 장착된 태양센서를 이용한 자세오류 감지)

  • Oh, Shi-Hwan
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • Generally, satellites continuously monitor that its major functions are working properly and their hardware are in a good status using several SOH data. In case a fault that is not recognized as a temporal problem or a failure that can be considered to propagate its damage to the other parts are detected, fault management logic is performed automatically without any contact of ground station. In this paper, attitude error detection using sun sensors on a rotating solar array is proposed. Attitude error can be detected by comparing the offset angle between the actual data computed from the sun sensor and the data predicted from the orbit and ephemeris information for the two types of solar array operation method. During the eclipse, the output of attitude error detection method becomes zero because the sun sensor output cannot be provided. Finally, the proposed method is analyzed through the data processing using on-orbit data.

Error Analysis of Reaction Wheel Speed Detection Methods (반작용휠 속도측정방법의 오차 분석)

  • Oh, Shi-Hwan;Lee, Hye-Jin;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.481-490
    • /
    • 2008
  • Reaction wheel is one of the actuators for spacecraft attitude control, which generates torque by changing an inertial rotor speed inside of the wheel. In order to generate required torque accurately and estimate an accurate angular momentum, wheel speed should be measured as close to the actual speed as possible. In this study, two conventional speed detection methods for high speed motor with digital tacho pulse (Elapsed-time method and Pulse-count method) and their resolutions are analyzed. For satellite attitude maneuvering and control, reaction wheel shall be operated in bi directional and low speed operation is sometimes needed for emergency case. Thus the bias error at low speed with constant acceleration (or deceleration) is also analysed. As a result, the speed detection error of elapsed-time method is largely influenced upon the high-speed clock frequency at high speed and largely effected on the number of tacho pulses used in elapsed time calculation at low speed, respectively.

A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm (퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템)

  • 이판묵;이종무;정성욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF

Design of a 3DOF motion capture system for HMD using micro gyroscopes

  • Song, Jin-Woo;Chung, Hak-Young;Park, Chan-Gook;Lee, Jang-Gyu;Kang, Tae-Sam;Park, Kyu-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.64.2-64
    • /
    • 2001
  • In this paper, fabricated is a motion capture and attitude detection system for Head Mounted Display HMD composed of three low-price and low-grade micro gyroscopes and a micro-controller, To calculate attitude of a body, modified INS algorithm is used. Because the micro gyroscope has much bias drift error, scale factor error, and run-to-run bias error, the motion of a body can not be measured exactly if the general INS algorithm and micro gyroscopes are used. To reduce the errors, three accelerometers can be used. In this case, however, the size and power consumption become too large to use in HMD system. The modified INS algorithm use the grid map and the characteristics of the human motions.

  • PDF

Attitude Determination GPS/INS Integration System Design Using Triple Difference Technique

  • Oh, Sang-Heon;Hwang, Dong-Hwan;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.615-625
    • /
    • 2012
  • GPS attitude outputs or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS output is applied to the attitude determination GPS/INS (ADGPS/INS) integrated navigation system, the performance of the system can be degraded. This paper proposes an ADGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which the inertial information is combined. Computer simulations and flight test were performed to verify effectiveness of the proposed navigation system. Results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correctly resolved and the cycle slip occurs.

The AGPS/INS Integrated Navigation System Design Using Triple Difference Technique (삼중 차분 기법을 이용한 AGPS/INS 통합 항법 시스템 설계)

  • 오상헌;박찬식;이상정;황동환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.736-744
    • /
    • 2003
  • The GPS attitude output or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS information is directly applied to the AGPS/INS integration system, the performance of the system can be rapidly degraded. This paper proposes an AGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which inertial information is combined. Computer simulations and van test were performed to verify the proposed integration system. The results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correct and the cycle slip occurs.

Fused Navigation of Unmanned Surface Vehicle and Detection of GPS Abnormality (무인 수상정의 융합 항법 및 GPS 이상 검출)

  • Ko, Nak Yong;Jeong, Seokki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.723-732
    • /
    • 2016
  • This paper proposes an approach to fused navigation of an unmanned surface vehicle(USV) and to detection of the outlier or interference of global positioning system(GPS). The method fuses available sensor measurements through extended Kalman filter(EKF) to find the location and attitude of the USV. The method uses error covariance of EKF for detection of GPS outlier or interference. When outlier or interference of the GPS is detected, the method excludes GPS data from navigation process. The measurements to be fused for the navigation are GPS, acceleration, angular rate, magnetic field, linear velocity, range and bearing to acoustic beacons. The method is tested through simulated data and measurement data produced through ground navigation. The results show that the method detects GPS outlier or interference as well as the GPS recovery, which frees navigation from the problem of GPS abnormality.

A Review of Error Detection During the Procedure of Stereo- restitution on the National Topographic Mapping in Korea (항공사진측양에서 도화작업의 오차에 대한 연구)

  • 최재화
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.4 no.2
    • /
    • pp.43-58
    • /
    • 1986
  • In a mapping, stereo-restitution of an aerial photogrammetric process, of which is a major factor for map-base preparation dominates the accuracy and the reliability of a topographical map. The majority of a map-base preparation has nowadays been carried out by an analogue method ie, by the stereo-plotter. In consequence, it is evident that the skilled, the level of technique and personal attitude of operator have influence upon observational error which relates the accuracy and the quality of a map. This research aims at detection and analysis of operator's carrier and types of stereoplotter. The test is also examined that the level of details and features of terrain would have influence on the accuracy of map. With the results. it is also considered that the field check has impact on map accuracy ; whether the field check prior to restitution or after restitution.

  • PDF

Design and Implementation of Pedestrian Position Information System in GPS-disabled Area (GPS 수신불가 지역에서의 보행자 위치정보시스템의 설계 및 구현)

  • Kwak, Hwy-Kuen;Park, Sang-Hoon;Lee, Choon-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4131-4138
    • /
    • 2012
  • In this paper, we propose a Pedestrian Position Information System(PPIS) using low-cost inertial sensors in GPS-disabled area. The proposed scheme estimates the attitude/heading angle and step detection of pedestrian. Additionally, the estimation error due to the inertial sensors is mitigated by using additional sensors. We implement a portable hardware module to evaluate performance of the proposed system. Through the experiments in indoor building, the estimation error of position information was measured as 2.4% approximately.

Step Length Estimation Algorithm for Firefighter using Linear Calibration (선형 보정을 이용한 구난요원의 보폭 추정 알고리즘)

  • Lee, Min Su;Ju, Ho Jin;Park, Chan Gook;Heo, Moonbeom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.640-645
    • /
    • 2013
  • This paper presents a step length estimation algorithm for Pedestrian Dead Reckoning using linear calibrated ZUPT (zero velocity update) with a foot mounted IMU. The IMU consists of 3 axis accelerometer, gyro and magnetometer. Attitude of IMU is estimated using an inertial navigation algorithm. To increase accuracy of step length estimation algorithm, we propose a stance detection algorithm and an enhanced ZUPT. The enhanced ZUPT calculates firefighter's step length considering velocity error caused by sensor bias during one step. This algorithm also works efficiently at various motions, such as crawling, sideways and stair stepping. Through experiments, the step length estimation performance of the proposed algorithm is verified.