• Title/Summary/Keyword: attitude control parameter

Search Result 55, Processing Time 0.026 seconds

Nonlinear Attitude Control for a Rigid Spacecraft by Feedback Linearization

  • Hyochoong Bang;Lee, Jung-Shin;Eun, Youn-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.203-210
    • /
    • 2004
  • Attitude control law design for spacecraft large angle maneuvers is investigated in this paper. The feedback linearization technique is applied to the design of a nonlinear tracking control law. The output function to be tracked is the quaternion attitude parameter. The designed control law turns out to be a combination of attitude and attitude rate tracking commands. The attitude-only output function, therefore, leads to a stable closed-loop system following the given reference trajectory. The principal advantage of the proposed method is that it is relatively easy to produce reference trajectories and associated controller.

Minimum-Time Attitude Reorientations of Three-Axis Stabilized Spacecraft Using Only Magnetic Torquers

  • Roh, Kyoung-Min;Park, Sang-Young;Choi, Kyu-Hong;Lee, Sang-Uk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.17-27
    • /
    • 2007
  • Minimum-time attitude maneuvers of three-axis stabilized spacecraft are presented to study the feasibility of using three magnetic torquers perform large angle maneuvers. Previous applications of magnetic torquers have been limited to spin-stabilized satellites or supplemental actuators of three axis stabilized satellites because of the capability of magnetic torquers to produce torques about a specific axes. The minimum-time attitude maneuver problem is solved by applying a parameter optimization method for orbital cases to verify that the magnetic torque system can perform as required. Direct collocation and a nonlinear programming method with a constraining method by Simpson's rule are used to convert the minimum-time maneuver problems into parameter optimization problems. An appropriate number of nodes is presented to find a bang-bang type solution to the minimum-time problem. Some modifications in the boundary conditions of final attitude are made to solve the problem more robustly and efficiently. The numerical studies illustrate that the presented method can provide a capable and robust attitude reorientation by using only magnetic torquers. However, the required maneuver times are relatively longer than when thrusters or wheels are used. Performance of the system in the presence of errors in the magnetometer as well as the geomagnetic field model still good.

Attitude Control of a Vehicle under the Disturbances by Sliding Mode Controller with Reaction Jets

  • Son, Sung-Han;Kim, Jinsu;Park, Kang-Bak;Teruo Tsuji;Tsuyoshi Hanamoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.166.6-166
    • /
    • 2001
  • An attitude control of an air vehicle based on the variable structure control is proposed. For an air vehicle, minimum weight is required. Thus, it is desired to reduce the input energy. The optimal state portrait curve using time-varying sliding surface is proposed to reduce the control energy. Tracking performance of the closed loop system is guaranteed under the existence of parameter variation and external disturbances.

  • PDF

Unscented KALMAN Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Abdelrahman, Mohammad;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.31-46
    • /
    • 2009
  • An Unscented Kalman Filter (UKF) for estimation of the attitude and rate of a spacecraft using only magnetometer vector measurement is developed. The attitude dynamics used in the estimation is the nonlinear Euler's rotational equation which is augmented with the quaternion kinematics to construct a process model. The filter is designed for small satellite in low Earth orbit, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag torque. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. Two types of actuators have been modeled and applied in the simulation. The PD controller is used for the two types of actuators (reaction wheels and thrusters) to detumble the spacecraft. The estimation error converged to within 5 deg for attitude and 0.1 deg/s for rate respectively when the two types of actuators were used. A joint state parameter estimation has been tested and the effect of the process noise covariance on the parameter estimation has been indicated. Also, Monte-Carlo simulations have been performed to test the capability of the filter to converge with the initial conditions sampled from a uniform distribution. Finally, the UKF performance has been compared to that of the EKF and it demonstrates that UKF slightly outperforms EKF. The developed algorithm can be applied to any type of small satellites that are actuated by magnetic torquers, reaction wheels or thrusters with a capability of magnetometer vector measurements for attitude and rate estimation.

Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

  • Keum, Jung-Hoon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.651-658
    • /
    • 2009
  • Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

Accuracy analysis of SPOT Orbit Modeling Using Orbit-Attitude Models (궤도기반 센서모델을 이용한 SPOT 위성 궤도모델링 정확도 분석)

  • Kim, Hyun-Suk;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.27-36
    • /
    • 2006
  • Conventionally, in order to get accurate geolocation of satellite images we need a set of ground control points with respect to individual scenes. In this paper, we tested the possibilities of modeling satellite orbits from individual scenes by establishing a sensor model for one scene and by applying the model, which was derived from the same orbital segment, to other scenes that has been acquired from the same orbital segment. We investigated orbit-attitude models with several interpolation methods and with various parameter sets to be adjusted. We used 7 satellite images of SPOT-3 with a length of 420km and ground control points acquired from GPS surveying. Results of the conventional individual scene modeling hardly introduced differences among different interpolation methods and different adjustment parameter sets. As the results of orbit modeling, the best model was the one with Lagrange interpolation for position/velocity and linear interpolation for attitude and with position/angle bias as parameter sets. The best model showed that it is possible to model orbital segments of 420km with ground control points measured within one scene (60km).

  • PDF

Numerical analysis of the attitude stability of a charged spacecraft in the Pitch-Roll-Yaw directions

  • Abdel-Aziz, Yehia A.;Shoaib, Muhammad
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.82-90
    • /
    • 2014
  • In this paper, the effect of Lorentz force on the stability of attitude orientation of a charged spacecraft moving in an elliptic orbit in the geomagnetic field is considered. Euler equations are used to derive the equations of attitude motion of a charged spacecraft. The equilibrium positions and its stability are investigated separately in the pitch, roll and yaw directions. In each direction, we use the Lorentz force to identify an attitude stabilization parameter. The analytical methods confirm that we can use the Lorentz force as a stabilization method. The charge-to-mass ratio is the main key of control, in addition to the components of the radius vector of the charged center of the spacecraft, relative to the center of mass of the spacecraft. The numerical results determine stable and unstable equilibrium positions. Therefore, in order to generate optimum charge, which may stabilize the attitude motion of a spacecraft, the amount of charge on the surface of spacecraft will need to be monitored for passive control.

Control System Modeling and Optimal Bending Filter Design for KSR-III First Stage (KSR-III 1단 자세제어 시스템 모델링 및 벤딩필터 최적 설계)

  • Ahn, Jae-Myung;Roh, Woong-Rae;Cho, Hyun-Chul;Park, Jeong-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.113-122
    • /
    • 2002
  • Control system modeling and optimal bending filter design for KSR-III (Korea Sounding Rocket III) are performed. Rigid rocket dynamics, aerodynamics, sloshing, structural bending, actuator dynamics, sensor dynamics and on-board computer characteristics are considered for control system modeling. Compensation for time-varying control system parameters is conducted by gain-scheduling. A filter to stabilize bending mode is designed using parameter optimization technique. Resultant attitude control system can satisfy required frequency domain stability margin.

Trajectory and Attitude Control for a Lunar lander Using a Reference Model (2nd Report)

  • Abe, Akio;Uchiyama, Kenji;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.531-536
    • /
    • 2003
  • In this paper, a redesigned guidance and control system for a lunar lander is presented. In past studies, the authors developed a trajectory and attitude control system which achieves the vertical soft landing on the lunar surface. It is confirmed that the system has a good tracking ability to a predefined profile and good robustness against a thruster failure mode where a partial failure of clustered engines was assumed. However, under the previous control laws, the landing point tends to be shifted, in response to the system parameter values, from a target point. Also, an unbalanced moment due to a thruster failure mode was not considered in the simulation. Therefore, in this study, the downrange control is added to the system to enable the vehicle to land at a pre-assigned target point accurately. Furthermore, inhibiting the effect of the unbalanced moment is attempted thorough redesigning the attitude control system. A numerical simulation was performed to confirm the ability of the proposed system with regard to the above problems. Moreover, in the past simulations, a low initial altitude was assumed as an initial condition: in this study, however, the performance of the proposed system is examined over the whole trajectory from an initial altitude of 10 [km] to the lunar surface.

  • PDF

Sliding Mode Control of Spacecraft with Actuator Dynamics

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.169-175
    • /
    • 2002
  • A sliding mode control of spacecraft attitude tracking with actuator, especially reaction wheel, is presented. The sliding mode controller is derived based on quaternion parameterization for the kinematic equations of motion. The reaction wheel dynamic equations represented by wheel input voltage are presented. The input voltage to wheel is calculated from the sliding mode controller and reaction wheel dynamics. The global asymptotic stability is shown using a Lyapunov analysis. In addition the robustness analysis is performed for nonlinear system with parameter variations and disturbances. It is shown that the controller ensures control objectives for the spacecraft with reaction wheels.