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Sliding Mode Control of Spacecraft with Actuator Dynamics

Yee-Jin Cheon

Abstract: A sliding mode control of spacecraft attitude tracking with actuator, especially reaction wheel, is presented. The sliding
mode controller is derived based on quaternion parameterization for the kinematic equations of motion. The reaction wheel dynamic
equations represented by wheel input voltage are presented. The input voltage to wheel is calculated from the sliding mode controller
and reaction wheel dynamics. The global asymptotic stability is shown using a Lyapunov analysis. In addition the robustness analysis
is performed for nonlinear system with parameter variations and disturbances. It is shown that the controller ensures control objec-

tives for the spacecraft with reaction wheels.
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I. Introduction

The control problems of spacecraft regulation, deployment,
and maneuvering, generally pose highly nonlinear characteris-
tics which govern dynamic equations, control rate saturation
and its limits[1]. The use of variable structure control for
spacecraft maneuvers has been developed for the adequate
treatment of such problems and the early contributions to the
study of sliding mode control of spacecraft have been
done[1,3,4,5]. An optimal control approach for the sliding
surface synthesis problem has been developed for a quaternion
parameterization{1, 5], and the regulation of spacecraft ma-
neuvers using a Gibbs vector parameterization was devel-
oped[3].

In most of research work for spacecraft control, the control-
lers are designed for external torque. These controllers may be
applied to torque device such as thruster. But in real applica-
tions, on-time of thruster is very important because system
response directly depends on it. In other words, actuator dy-
namics and characteristics should be considered for real appli-
cations. The work for sliding mode control of thruster-
controlled spacecraft is found in [8]. Furthermore, the control-
ler whose output is external torque is hardly applied to mo-
mentum exchange devices, such as reaction wheels, momen-
tum wheels, and control momentum gyros because momentum
exchange device is a motor and it requires voltage as an actua-
tor input.

The spacecraft equipped with momentum exchange devices
consists of slow dynamic system for the spacecraft itself and
fast dynamic system for the wheel. Also there is momentum
exchange between spacecraft system and reaction wheel sys-
tem without changing overall inertial angular momentum. The
angular momentum generated by the reaction wheel is trans-
ferred to the spacecraft system and momentum generated by
spacecraft rotation affects reaction wheel system. Therefore
the controller with actuator dynamics should be considered for
real applications. But there are a few research works(1, 6, 8]
found for this area. In {1], a sliding mode controller was pre-
sented for reaction wheels inputs. However the controller in
[1] did not take into account the reaction wheel dynamics.

In this paper, a sliding mode control of spacecraft with ac-
tuator dynamics is considered. The sliding mode controller is
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derived based on quaternion parameterization. A robustness
analysis is performed for the nonlinear system with parameter
variations and disturbances. The actuator dynamics, especially
reaction wheel, is studied and the reaction wheel dynamic
equation represented by wheel input voltage is derived. The
wheel input voltage for the wheel dynamic equation is ob-
tained from the sliding mode controller. It is shown that the
derived controller ensures control objectives irrespective of
unmodeled effects and disturbances for spacecraft equipped
with reactions wheels.

II. Theoretical background
In this section, the mathematical model of a three-axis stabi-
lized spacecraft is described by dynamic and kinematic equa-
tions of motion. The attitude of spacecraft can be described by
means of quaternion, defined as follows.

qs{"”] M
q4

with
q
413 =| g2 | = Asin(®/2) (2a)
q3
g4 =cos(®/2) (2b)

where n is an unit vector of corresponding to rotation axis
and @ is the angle of rotation. The quaternion satisfies a
normalization constraint.

a'q=qhq13 +4q7 =1 3)

The quaternion kinematic equations of motion are derived
by using spacecraft angular velocity (@) and expressed by
the following [1].

|
q =59(w)=§a(q>w @)

where Ofw) and Z(g) are defined as following [1].

~[ox] | @
Qw)=| -~ i - (5a)
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94133 +(q13%]
B(g)=| ceeeeeeeeeees (5b)

where I, is the nxn identity matrix. The matrix cross
product operator [wx] and [g;3x] are defined by
axb=[ax]b, and expressed as

0 -a; a
[ax]={ a3 0 -gq (6)
-a;, a 0

The error quaternion between two quaternions, ¢ and the
desired quaternion gy, is defined by

%13
& =| e =q®q ™
&4

where ® is the quaternion multiplier, and the inverse
quaternion is defined by

;' =01 -9 -a3 441" (8)

Also, the other useful identities are given by [1]
=T
&113 == (qd)q (93)

&4 =‘Iqu (9b)

The time derivative of Equation (9) is given by

. 1 1
43 =—2—5q4w+5[5q13 x| (10a)

. 1 - 1
5q4=——2—wT=T<qd>q=—5wT6q13 (10b)

Let J be the rigid body inertia matrix and u be the
control torque vector. The Euler’s equations of motions for a
rigid body are given by

o= f@+J u (11)
where,

flo)=3"Iox) o (12)

IIL. Sliding mode control

The objective of the attitude control is to turn the spacecraft
such that the angular velocity of spacecraft, i.e. @, converges
to 0, the vector part of the error quaternion, &3, converges
to 0, and the sclar part, dg,, approaches 1.

Generally, the design strategy of the sliding mode controller
consists of two steps[2]:

1. Selection of switching surfaces

2. Sliding condition design

Let us consider a switching surface, a 3-dimensional hyper-
plane, in the state space of a 6th order system [w &I]T . The
sliding surface is designed in such a way that the spacecraft
trajectory, if on the surface, converges to the desired

quaternion. However, the motion of spaccraft is not confined
to the 3-dimensional hyperplane in general.

Therefore, a control law forcing the spacecraft motion
towards the sliding surface is necessary for obtaining stable
spacecraft motion. The sliding condition keeps decreasing the
distance from the initial state to the sliding surface, such that
every solution @, O3 originating outside the sliding
surface tends to it. The sliding surface is an invariant set of the
spacecraft motion and the attitude trajectory of the system
converges to the desired attitude.

1. Selection of switching surfaces

The sliding surface is the subspace of the state space de-

fined below[2]:

s={(@.5q,3)|s=0} (13)
First, let a sliding surface s be defined as
s=w+AZT (q)g=w+A 845 =0 (14)

where A is a diagonal matrix with positive elements.

It will be shown that the spacecraft motion on a 3-
dimensional sliding surface in the 6-dimensional state space of
the vector part of the attitude error quaternion dg;; and the
spacecraft angular velocity @ is stable. From the definition
of sliding surface, in Equation (14), we will show the
convergence of &3 to zero and &4 to 1 with an
exponential decay.

Let us choose the following Lyapunov candidate function:

V, = 8138413 + (1~ 89,)* (15)

From the quaternion normalization constraint, &1{3&113 +&1£ =1,
Equation (15) can be rewritten as

Ve =2(1-844) (16)

Applying Equation (10b), the time derivative of the Lyapunov
candidate function, Equation (16) is given by

V=284, =0 &q)3 (17)

Using the sliding vector in Equation (14), Equation (17) can
be rewritten as

V, =-0q117 8,5 =-3q11 84,3 (18)

The time derivative of the Lyapunov function is negative defi-
nite, since A is the positive definite matrix.

It should be noted that the equilibriumdg=[0 0 0O —l]T s
w=0 is stable. Furthermore, if the sliding surface is defined as,

s=w—A5q13 =0 (19)

It is possible to show that the equilibriumdg=[0 0 0 —l]T R
w=20 is stable by using the following Lyapunov candidate
function

Ve = 813603 + (1+624)° (20)
Now, we redefine the sliding surface as,

s =w+sign(6q, MET (q)q =w+sign(6g, 18413 =0 (21)
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As described the above, one can notice that the equilibrium
becomes &=[0 0 0 -1]7 for &, <0 , and the
equilibrium becomes & =[0 0 0 17 for &, >0.In other
words, the sliding surface is selected depending on &, , and
the state reaches the nearest equilibrium regarding &, .

2. Sliding condition design

The attraction of the sliding surface is assured by enforcing
the sliding mode existence condition, which for a single input
case are given by the following relations [3]:

tim L5 <0 (222)
s—0" dt

. d

lim —s>0 (22b)
s—0” dt

For a general vector-valued case, Equation (22) is replaced
with the Lyapunov condition below [3]:

dit||s||2=2sT§j—<o (23)

As described previously, the sliding mode controller is im-

plemented to enforce the spacecraft motion towards the sliding
surface, and track a desired quaternion ¢ .
Generally, the spacecraft attitude motion is not on the sliding
surface, a desired control torque consists of the sum of an
equivalent control and a part making the sliding vector con-
verges to @ in a finite time. If the attitude motion is on the
sliding surface, the equivalent torque is the control torque
necessary to maintain the attitude motion on the sliding sur-
face. The sliding mode controller design with external torques
is given by

u= ~J{f(w) + %ng"(@z; M(Sg413,5 + [&113X])‘0} — Ks — Psign(s)
~ oo~ sign(81)9A(8 .5 +18413x])o— Ks — Psign(s)

@4

where K and P are any positive definite diagonal matrices
of designer-selected weights, and the equivalent control torque,
U, is given by

Uy = —J{f(w)+%sign(5q4)/1(5q413x3 +[5q13x]}o} (25)

K and P assure the two conditions for sliding. K is
effective for large s and P is dominant for small s.

Using the sliding surface Equation (21), the time derivative
of the sliding vector becomes

d . .
“ci:w**ﬂg"(&h)/‘(s 913 (26)

Applying Equation (10a) and (11), Equation (26) is also given
by

g=f(w)+J_1u+sign(5q4ﬂ(%®4w+%[&113 X}”J (27)

Using the sliding mode controller given by Equation (24),

Equation (27) then becomes

d 1
i = f(w)— f(w) —Esign(5q4)A(§q4l3x3 +{oq3x)) @

I (Ks+ Psign(s)) + Sign(5q4)A(%5q4a) + %[5q13 %] wj 28)
=-J(Ks+ Psign(s))

Using Equation (28), one can easily see that the sliding mode
existence condition in Equation (23) is satisfied, given by

% l|s112=—s"J 7 (Ks + Psign(s))< 0 (29)
The saturation function saf(s, &), used to reduce chattering

in the control torques, is defined by

sign(s;) if|s; > ¢
sat(s, &) = 8; if]s, |< i=1,23 30)
P
£

where £>0 is the “boundary layer thickness.”

1V. Robustness
Now we consider disturbance and uncertainty to the robust-
ness characteristic of sliding mode controller. We consider the
system (11) with disturbance and uncertainty as the following

©=f+A +(G+AG)u(t) +d() 3N

where G corresponds to J' In Equation (31), f and
Af are nonlinear driving term and their uncertainties, G
and AG are the control gain and its uncertainty, and d(f)
and u(f) represent external disturbances and control signals.
Furthermore Af, AG and d(f) are assumed to be bounded
by known, continuous functions, i.e.

|Af € F()
[AG IS T() (32)
|d |< D(t)

Due to the disturbance and uncertainty, the time derivative
of the sliding vector in Equation (26) needs to be modified to

ds - —1 .
— =5=—-J  (Ks+ Psign(s))+ Af +d + AGu
= ( gn(s)+4f 31

= —J 7 Ks - J 7' Psign(s) + Af +d + AGu

The following selection is sufficient to ensure the sliding
mode existence condition in Equation (23).

Ajip =F +T |u|+D 2| Af +d + AGu | 34
where A, is the minimum singular value of the matrix
J'p.

V. Actuator dynamics
There are several ways of producing torque for the attitude
control of spacecraft. The use of momentum exchange devices,
such as reaction wheels, momentum wheels, and control mo-
ment gyros(CMGs), provides angular momentum exchange
between parts of the spacecraft without changing overall iner-
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tial angular momentum. For very accurate attitude control
systems and for moderately fast maneuvers, the reaction
wheels are preferred because they allow continuous and
smooth control. The range of achievable torques with reaction
wheels is of the order of 0.01 — 2 N-m.

The actuator system that we shall discuss here is a reaction
wheel. Conventionally the reaction wheel is a DC motor and
can be mounted in the spacecraft with its rotational axis in any
direction relative to the spacecraft’s axis frame.

The differential equation for the armature of the DC motor
circuit is given by [7]

di

—E+ Ry + Ky Q= e 35)

L”t

where R, is the armature resistance(ohm), La is the arma-
ture inductance(kenry), K, the is back emf constant, Q3 is
the angular velocity of motor(rad/sec), and i,, e, are the
armature current(ampere) and applied armature voltage (volr)
respectively.

In Equation (35), K,Q is the back emf which is the in-
duced voltage in the armature proportional to the product of
the flux and angular velocity. For a constant flux, the induced
voltage e, is directly proportional to the angular velocity, or

do
e, =K, — 36
b =Ry (36)
where & the is angular displacement of the motor
shaft(radian).
The torque 7 developed by the motor becomes directly
proportional to the armature current so that

r=K,i, (37)

where K, is the motor torque constant(NV-m/4).
The armature current produces the torque that is applied to the
inertia and friction:

JQ+bQ=1=K,i, (38)

where J,, is the moment of inertia of the motor(kg-m?) and b
is the viscous-friction coefficient of the motor(N-m/rad/sec).

Assuming that all initial conditions are zero and considering
E,(s) as the input and O(s) as the output, and taking the
Laplace transforms of Equations (35), (36) and (38), the trans-
fer function for the DC motor is obtained as the following:

O(s) _ Ko
Eo(s)  s[L,J,s% +(Lob+R,J,)s + R+ K, K]

(39

The inductance L, in the armature circuit is usally small and
may be neglected. If L, is neglected, then the transfer
function given by Equation (39) reduces to

os) _ K
E (s) s(T,s+1)

(40)

where,

K, =K, /(R,b+ K, K;): motor gain constant
T, =R,J,,(R,b+ K, K,): motor time constant

Notice that from Equation (40), the differential equation for
the motor system is given by

.. . K
gl o2 e, 41)
Tm Tm
Equation (41) can be rewritten as
. K
Q+ —I—Q =—Le, (42)
Tm Tm
- J K
JQ+=20=J, —Le, (43)
Tm Tm

If the spacecraft is equipped with 3 orthogonal reaction
wheels, then the Euler’s equations becomes by using Equation
(43) for the wheel dynamics.

- )0=-wx(Jo+J, 2 -u (44a)
Jw(cb+9):1wf—rn'ea —’;—:(Q+w):ﬁ (44b)

where J, is the diagonal inertia matrix of the wheels, 2 is
the wheel angular velocity vector, u is the wheel torque
vector, and K,, T, are the diagonal matrix of the motor
gain constant and motor time constant, respectively.

From the Equation (24), the sliding mode controller for the
spacecraft equipped with wheels is given by the following:

i = -{wx)(Jo+ J,0) +%sign<5q4 )T — (834 T33 + (601370}
+ Ks + Psign(s) (45)
-y

The stability of the system can also be easily proven by using
the Lyapunov condition in Equation (23).

The time derivative of the sliding vector Equation (26) is re-
written and given by

d. . . ,
7j=w+szgn(5q4m i (46)

Applying Equation (10a) and (44a), Equation (46) is also
given by

?:(J -7, Fox(Jo+J,2-7)
t 1 1 “7)
+ Sign(fs%)"[ifs%‘"*“ 3[5‘113 X}")

Equation (47) becomes by using the sliding mode controller as

in Equation (45)

%j— =(J~J )Y —ox(Jo+J,2)+0x(Jo+J, 2

——zl—sign(5q4 WJ - JW)A(5q4 +%[5q13 x]}u— Ks — Psign(s) }

+Sig”(544)4(“;‘5¢14w+%[5¢113 x]wj

=—~(J =J,,)" (Ks + Psign(s))
(48)

Using Equation (48), one can easily know that the sliding
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mode existence condition in Equation (23) is satisfied and
given by

dit” slP=—sT (J=J,) " (Ks + Psign(s))<0  (49)

From Equations (44b) and (45), the voltage inputs to the wheel
become
T

e, = Tn_ {'1/+J—W(Q+w)} (50)
K, J, T,

m

Considering Equations (44), (45) and (50), the stability of the
system with wheels can be easily proven by using the
Lyapunov condition in Equation (23).

V1. Simulation
An example of a three-axis spacecraft maneuver is pre-
sented, and the simultaneous reorientation of all axes is con-
sidered here, with the following inertia matrix taken from [3].

J =diag[t14 86 87]kg-m’

The other initial conditions and design parameters are the
following:

qtp)=[0 0 o 11"
qd=[0.4423 0.4423 0.4423 0.6428]T

o(ty) =[0.001 0.005 0.001]" rad/sec

K =10135, P=02I,, A=021,,

J,, = diag{0.0077 0.0077 0.0077] kg-m’

R, =1(ohm), K, =0.0001, K, =0.1(N-m/4)
viscous friction : 1.21e-6 (N-m/rad/sec)
Qip)=[0 0 017 rad/sec

And the boundary layer thickness is set to & =0.001 and the
input voltage to wheels is limited to 5(¥). Also, the control
torque of the wheels is limited to 1.0 N-m.

To show the robustness of the controller, disturbance torques
are assumed to be

d () =[0.005sin(0.05r) 0.003¢0s(0.05¢) —O.OOSSin(O,OSI)]T N-m
The matrix P =0.313,51s chosen to satisfy the condition
defined by Equation (34).

Fig. 1 depicts the time trajectories of the error quaternions
and shows the convergence of dg3 to zero and &4 to 1.
Fig. 2 shows the angular velocity of spacecraft. Fig. 3 shows
the switching function trajectories in presence of disturbance.
The plot of the input voltge to the wheels and the control
torque are shown in Fig. 4 and 3, respectively. From Fig. 1 to
Fig. 3, one can know that the controller accommodate the
external disturbance torques. As described in section IV, if
A ;-1p 18 chosen to satisty the robustness condition given by
Equation (34), the controller is also robust to parameter
variation and unmodelled effects.

We select g, =[-04423 -04423 -0.4423 -0.6428]
to show the equilibrium &=[0 0 0 —1]7 is stable for
&4 <0. From the Fig. 6, one can notice that the controller
drives the system toward the equilibrium & =[0 0 0 —l]T

for &g4 <0. Fig. 7 and Fig. 8 show the time trajectories of the
error quaternion and the swiching function when sigi{dy,) is
not considered. In this case, the controller enforces the system
toward the equilibrium &=[0 0 0 17 for &, <0.Soit
requires more control effors to reach the sliding surface and the
equilibrium. As a result, one can know that using signdy,)
assures the state reaches the nearest equillibrium of & .

VIL Conclusions

The problem of sliding mode control of spacecraft with ac-
tuator dynamics is studied for real applications. The controller
is derived based on quaternion, and the analysis of robustness
is presented for the derived control scheme in the presence of
unmodeled effects and disturbances. For a real-application,
actuator dynamics, especially reaction wheels, is studied. The
reaction wheel dynamic equation represented by the wheel
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