• Title/Summary/Keyword: attack group similarity

Search Result 4, Processing Time 0.019 seconds

B-Corr Model for Bot Group Activity Detection Based on Network Flows Traffic Analysis

  • Hostiadi, Dandy Pramana;Wibisono, Waskitho;Ahmad, Tohari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4176-4197
    • /
    • 2020
  • Botnet is a type of dangerous malware. Botnet attack with a collection of bots attacking a similar target and activity pattern is called bot group activities. The detection of bot group activities using intrusion detection models can only detect single bot activities but cannot detect bots' behavioral relation on bot group attack. Detection of bot group activities could help network administrators isolate an activity or access a bot group attacks and determine the relations between bots that can measure the correlation. This paper proposed a new model to measure the similarity between bot activities using the intersections-probability concept to define bot group activities called as B-Corr Model. The B-Corr model consisted of several stages, such as extraction feature from bot activity flows, measurement of intersections between bots, and similarity value production. B-Corr model categorizes similar bots with a similar target to specify bot group activities. To achieve a more comprehensive view, the B-Corr model visualizes the similarity values between bots in the form of a similar bot graph. Furthermore, extensive experiments have been conducted using real botnet datasets with high detection accuracy in various scenarios.

Cyber attack group classification based on MITRE ATT&CK model (MITRE ATT&CK 모델을 이용한 사이버 공격 그룹 분류)

  • Choi, Chang-hee;Shin, Chan-ho;Shin, Sung-uk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.1-13
    • /
    • 2022
  • As the information and communication environment develops, the environment of military facilities is also development remarkably. In proportion to this, cyber threats are also increasing, and in particular, APT attacks, which are difficult to prevent with existing signature-based cyber defense systems, are frequently targeting military and national infrastructure. It is important to identify attack groups for appropriate response, but it is very difficult to identify them due to the nature of cyber attacks conducted in secret using methods such as anti-forensics. In the past, after an attack was detected, a security expert had to perform high-level analysis for a long time based on the large amount of evidence collected to get a clue about the attack group. To solve this problem, in this paper, we proposed an automation technique that can classify an attack group within a short time after detection. In case of APT attacks, compared to general cyber attacks, the number of attacks is small, there is not much known data, and it is designed to bypass signature-based cyber defense techniques. As an attack model, we used MITRE ATT&CK® which modeled many parts of cyber attacks. We design an impact score considering the versatility of the attack techniques and proposed a group similarity score based on this. Experimental results show that the proposed method classified the attack group with a 72.62% probability based on Top-5 accuracy.

3-Step Security Vulnerability Risk Scoring considering CVE Trends (CVE 동향을 반영한 3-Step 보안 취약점 위험도 스코어링)

  • Jihye, Lim;Jaewoo, Lee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • As the number of security vulnerabilities increases yearly, security threats continue to occur, and the vulnerability risk is also important. We devise a security threat score calculation reflecting trends to determine the risk of security vulnerabilities. The three stages considered key elements such as attack type, supplier, vulnerability trend, and current attack methods and techniques. First, it reflects the results of checking the relevance of the attack type, supplier, and CVE. Secondly, it considers the characteristics of the topic group and CVE identified through the LDA algorithm by the Jaccard similarity technique. Third, the latest version of the MITER ATT&CK framework attack method, technology trend, and relevance between CVE are considered. We used the data within overseas sites provide reliable security information to review the usability of the proposed final formula CTRS. The scoring formula makes it possible to fast patch and respond to related information by identifying vulnerabilities with high relevance and risk only with some particular phrase.

Extraction and Taxonomy of Ransomware Features for Proactive Detection and Prevention (사전 탐지와 예방을 위한 랜섬웨어 특성 추출 및 분류)

  • Yoon-Cheol Hwang
    • Journal of Industrial Convergence
    • /
    • v.21 no.9
    • /
    • pp.41-48
    • /
    • 2023
  • Recently, there has been a sharp increase in the damages caused by ransomware across various sectors of society, including individuals, businesses, and nations. Ransomware is a malicious software that infiltrates user computer systems, encrypts important files, and demands a ransom in exchange for restoring access to the files. Due to its diverse and sophisticated attack techniques, ransomware is more challenging to detect than other types of malware, and its impact is significant. Therefore, there is a critical need for accurate detection and mitigation methods. To achieve precise ransomware detection, an inference engine of a detection system must possess knowledge of ransomware features. In this paper, we propose a model to extract and classify the characteristics of ransomware for accurate detection of ransomware, calculate the similarity of the extracted characteristics, reduce the dimension of the characteristics, group the reduced characteristics, and classify the characteristics of ransomware into attack tools, inflow paths, installation files, command and control, executable files, acquisition rights, circumvention techniques, collected information, leakage techniques, and state changes of the target system. The classified characteristics were applied to the existing ransomware to prove the validity of the classification, and later, if the inference engine learned using this classification technique is installed in the detection system, most of the newly emerging and variant ransomware can be detected.