As the IT industry developed, the information held by the company soon became a corporate asset. As this information has value as an asset, the number and scale of various cyber attacks which targeting enterprises and institutions is increasing day by day. Therefore, research are being carried out to protect the assets from cyber attacks by using the attack graph to identify the possibility and risk of various attacks in advance and prepare countermeasures against the attacks. In the attack graph, security metric is used as a measure for determining the importance of each asset or the risk of an attack. This is a key element of the attack graph used as a criterion for determining which assets should be protected first or which attack path should be removed first. In this survey, we research trends of various security metrics used in attack graphs and classify the research according to application viewpoints, use of CVSS(Common Vulnerability Scoring System), and detail metrics. Furthermore, we discussed how to graft the latest security technologies, such as MTD(Moving Target Defense) or SDN(Software Defined Network), onto the attack graphs.
시스템 및 네트워크 환경의 규모가 확대되고, 네트워크 구조 및 시스템 구성이 빈번하게 변화함에 따라 네트워크 관리자가 현황을 수동으로 관리하고 실시간 변동사항을 식별하는 데에 많은 어려움이 발생하고 있다. 본 논문에서는 동적인 네트워크 정보를 실시간으로 스캔하고, 사전에 수집한 취약점 정보를 바탕으로 네트워크 내 장치의 취약성 정도를 점수화하고 최종적으로 공격자의 입장에서 공격 가능한 모든 경로를 도출하여 네트워크 관리자에게 공격 가능성이 높은 경로 목록을 제공하는 알고리즘을 제안하였다. 또한 제안하는 알고리즘을 토대로 한 Attack Graph를 실제로 구현하였으며, Software Defined Networking (SDN) 환경이 포함된 동적으로 변화하는 가상 네트워크 환경을 구축한 후 시뮬레이션을 진행하여 Moving Target Defense (MTD) 개념이 반영된 시스템에도 적용이 가능함을 입증하였다.
Kim, Jun Seok;Kang, Hyunjae;Kim, Jinsoo;Kim, Huy Kang
한국컴퓨터정보학회논문지
/
제23권11호
/
pp.75-84
/
2018
Social engineering attack means to get information of Social engineering attack means to get information of opponent without technical attack or to induce opponent to provide information directly. In particular, social engineering does not approach opponents through technical attacks, so it is difficult to prevent all attacks with high-tech security equipment. Each company plans employee education and social training as a countermeasure to prevent social engineering. However, it is difficult for a security officer to obtain a practical education(training) effect, and it is also difficult to measure it visually. Therefore, to measure the social engineering threat, we use the results of social engineering training result to calculate the risk by system asset and propose a attack graph based probability. The security officer uses the results of social engineering training to analyze the security threats by asset and suggests a framework for quick security response. Through the framework presented in this paper, we measure the qualitative social engineering threats, collect system asset information, and calculate the asset risk to generate probability based attack graphs. As a result, the security officer can graphically monitor the degree of vulnerability of the asset's authority system, asset information and preferences along with social engineering training results. It aims to make it practical for companies to utilize as a key indicator for establishing a systematic security strategy in the enterprise.
As the number of systems increases and the network size increases, automated attack prediction systems are urgently needed to respond to cyber attacks. In this study, we developed four types of information gathering sensors for collecting asset and vulnerability information, and developed technology to automatically generate attack graphs and predict attack targets. To improve performance, the attack graph generation method is divided into the reachability calculation process and the vulnerability assignment process. It always keeps up to date by starting calculations whenever asset and vulnerability information changes. In order to improve the accuracy of the attack target prediction, the degree of asset risk and the degree of asset reference are reflected. We refer to CVSS(Common Vulnerability Scoring System) for asset risk, and Google's PageRank algorithm for asset reference. The results of attack target prediction is displayed on the web screen and CyCOP(Cyber Common Operation Picture) to help both analysts and decision makers.
본 논문은 현대의 복잡한 사이버 공격을 모사하는 훈련 시나리오를 효과적으로 표현하기 위한 모델인 S-CAFG(Stage-based Cyber Attack Flow Graph)를 제안하고 평가한다. 이 모델은 더 복잡한 시나리오 표현을 위해 기존 그래프 및 트리 모델을 결합하고 stage 노드를 도입했다. 평가는 기존 모델링 기법으로는 표현하기 어려운 시나리오를 제작하고 이를 S-CAFG로 모델링하는 방식으로 진행했다. 평가 결과, S-CAFG는 동시 공격, 부가적 공격, 우회 경로 선택 등 매우 복잡한 공격 시나리오를 효과적으로 표현할 수 있음을 확인했다.
Junho Jang;Saehee Jun;Huiju Lee;Jaegwan Yu;SungJin Park;Su-Youn Hong;Huy Kang Kim
한국컴퓨터정보학회논문지
/
제28권5호
/
pp.57-66
/
2023
본 논문에서는 Enterprise 네트워크 이외 환경에서의 공격 그래프 연구 중 최근 5년간 가장 많이 연구된 사이버-물리 시스템(CPS) 환경에 대한 공격 그래프 연구 동향을 살펴보고, 기존 연구의 한계와 앞으로 나아갈 방향을 분석한다. 최근 5년간 발표된 공격 그래프 논문 150여 편 중 35편이 CPS 환경을 대상으로 하고 있으며, 본 논문에서는 CPS 환경의 보안 측면 특징을 살펴보고, 대상 연구들을 이러한 특징들에 따라 물리 시스템 모델링 여부와 네트워크 단절 구간에 대한 고려 여부의 두 가지 관점으로 분류 및 분석한다. 본 논문에서 소개한 20편의 논문 중 절반이 CPS 환경의 특징을 제대로 반영하지 못하며, 나머지 절반의 연구가 물리 시스템 모델링과 네트워크 단절 구간 중 하나씩을 다루고 있다. 본 논문에서는 이러한 상황을 바탕으로 CPS 환경에서의 공격 그래프 연구가 직면한 어려움을 진단하고 이에 따라 앞으로의 CPS 환경 공격 그래프 연구는 국가주도 연구, 공개된 상용 시스템을 대상으로 한 연구가 주를 이룰 것으로 분석한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권4호
/
pp.2149-2170
/
2017
Application-layer Distributed Denial-of-Service (DDoS) attack is one of the leading security problems in the Internet. In recent years, the attack strategies of application-layer DDoS have rapidly developed. This paper introduces a new attack strategy named Path Vulnerabilities-Based (PVB) attack. In this attack strategy, an attacker first analyzes the contents of web pages and subsequently measures the actual response time of each webpage to build a web-resource-weighted-directed graph. The attacker uses a Top M Longest Path algorithm to find M DDoS vulnerable paths that consume considerable resources when sequentially accessing the pages following any of those paths. A detection mechanism for such attack is also proposed and discussed. A finite-state machine is used to model the dynamical processes for the state of the user's session and monitor the PVB attacks. Numerical results based on real-traffic simulations reveal the efficiency of the attack strategy and the detection mechanism.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권12호
/
pp.4008-4023
/
2022
Since machine learning was introduced into cross-site scripting (XSS) attack detection, many researchers have conducted related studies and achieved significant results, such as saving time and labor costs by not maintaining a rule database, which is required by traditional XSS attack detection methods. However, this topic came across some problems, such as poor generalization ability, significant false negative rate (FNR) and false positive rate (FPR). Moreover, the automatic clustering property of graph convolutional networks (GCN) has attracted the attention of researchers. In the field of natural language process (NLP), the results of graph embedding based on GCN are automatically clustered in space without any training, which means that text data can be classified just by the embedding process based on GCN. Previously, other methods required training with the help of labeled data after embedding to complete data classification. With the help of the GCN auto-clustering feature and labeled data, this research proposes an approach to detect XSS attacks (called GCNXSS) to mine the dependencies between the units that constitute an XSS payload. First, GCNXSS transforms a URL into a word homogeneous graph based on word co-occurrence relationships. Then, GCNXSS inputs the graph into the GCN model for graph embedding and gets the classification results. Experimental results show that GCNXSS achieved successful results with accuracy, precision, recall, F1-score, FNR, FPR, and predicted time scores of 99.97%, 99.75%, 99.97%, 99.86%, 0.03%, 0.03%, and 0.0461ms. Compared with existing methods, GCNXSS has a lower FNR and FPR with stronger generalization ability.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권5호
/
pp.1920-1937
/
2015
Network environment has been under constant threat from both malicious attackers and inherent vulnerabilities of network infrastructure. Existence of such threats calls for exhaustive vulnerability analyzing to guarantee a secure system. However, due to the diversity of security hazards, analysts have to select from massive alternative hardening strategies, which is laborious and time-consuming. In this paper, we develop an approach to seek for possible hardening strategies and prioritize them to help security analysts to handle the optimal ones. In particular, we apply a Risk Flow Attack Graph (RFAG) to represent network situation and attack scenarios, and analyze them to measure network risk. We also employ a multi-objective genetic algorithm to infer the priority of hardening strategies automatically. Finally, we present some numerical results to show the performance of prioritizing strategies by network risk and hardening cost and illustrate the application of optimal hardening strategy set in typical cases. Our novel approach provides a promising new direction for network and vulnerability analysis to take proper precautions to reduce network risk.
As the number of internet-connected appliances and the variety of IoT services are rapidly increasing, it is hard to protect IT assets with traditional network security techniques. Most traditional network log analysis systems use rule based mechanisms to reduce the raw logs. But using predefined rules can't detect new attack patterns. So, there is a need for a mechanism to reduce congested raw logs and detect new attack patterns. This paper suggests enterprise security management for IoT services using graph and network measures. We model an event network based on a graph of interconnected logs between network devices and IoT gateways. And we suggest a network clustering algorithm that estimates the attack probability of log clusters and detects new attack patterns.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.