• Title/Summary/Keyword: attack graph

Search Result 37, Processing Time 0.021 seconds

Survey on the use of security metrics on attack graph

  • Lee, Gyung-Min;Kim, Huy-Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.95-105
    • /
    • 2018
  • As the IT industry developed, the information held by the company soon became a corporate asset. As this information has value as an asset, the number and scale of various cyber attacks which targeting enterprises and institutions is increasing day by day. Therefore, research are being carried out to protect the assets from cyber attacks by using the attack graph to identify the possibility and risk of various attacks in advance and prepare countermeasures against the attacks. In the attack graph, security metric is used as a measure for determining the importance of each asset or the risk of an attack. This is a key element of the attack graph used as a criterion for determining which assets should be protected first or which attack path should be removed first. In this survey, we research trends of various security metrics used in attack graphs and classify the research according to application viewpoints, use of CVSS(Common Vulnerability Scoring System), and detail metrics. Furthermore, we discussed how to graft the latest security technologies, such as MTD(Moving Target Defense) or SDN(Software Defined Network), onto the attack graphs.

An Attack Graph Model for Dynamic Network Environment (동적 네트워크 환경에 적용 가능한 Attack Graph 모델 연구)

  • Moon, Joo Yeon;Kim, Taekyu;Kim, Insung;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.485-500
    • /
    • 2018
  • As the size of the system and network environment grows and the network structure and the system configuration change frequently, network administrators have difficulty managing the status manually and identifying real-time changes. In this paper, we suggest a system that scans dynamic network information in real time, scores vulnerability of network devices, generates all potential attack paths, and visualizes them using attack graph. We implemented the proposed algorithm based attack graph; and we demonstrated that it can be applicable in MTD concept based defense system by simulating on dynamic virtual network environment with SDN.

Social Engineering Attack Graph for Security Risk Assessment: Social Engineering Attack Graph framework(SEAG)

  • Kim, Jun Seok;Kang, Hyunjae;Kim, Jinsoo;Kim, Huy Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.75-84
    • /
    • 2018
  • Social engineering attack means to get information of Social engineering attack means to get information of opponent without technical attack or to induce opponent to provide information directly. In particular, social engineering does not approach opponents through technical attacks, so it is difficult to prevent all attacks with high-tech security equipment. Each company plans employee education and social training as a countermeasure to prevent social engineering. However, it is difficult for a security officer to obtain a practical education(training) effect, and it is also difficult to measure it visually. Therefore, to measure the social engineering threat, we use the results of social engineering training result to calculate the risk by system asset and propose a attack graph based probability. The security officer uses the results of social engineering training to analyze the security threats by asset and suggests a framework for quick security response. Through the framework presented in this paper, we measure the qualitative social engineering threats, collect system asset information, and calculate the asset risk to generate probability based attack graphs. As a result, the security officer can graphically monitor the degree of vulnerability of the asset's authority system, asset information and preferences along with social engineering training results. It aims to make it practical for companies to utilize as a key indicator for establishing a systematic security strategy in the enterprise.

A Study on the Design and Implementation of System for Predicting Attack Target Based on Attack Graph (공격 그래프 기반의 공격 대상 예측 시스템 설계 및 구현에 대한 연구)

  • Kauh, Janghyuk;Lee, Dongho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.79-92
    • /
    • 2020
  • As the number of systems increases and the network size increases, automated attack prediction systems are urgently needed to respond to cyber attacks. In this study, we developed four types of information gathering sensors for collecting asset and vulnerability information, and developed technology to automatically generate attack graphs and predict attack targets. To improve performance, the attack graph generation method is divided into the reachability calculation process and the vulnerability assignment process. It always keeps up to date by starting calculations whenever asset and vulnerability information changes. In order to improve the accuracy of the attack target prediction, the degree of asset risk and the degree of asset reference are reflected. We refer to CVSS(Common Vulnerability Scoring System) for asset risk, and Google's PageRank algorithm for asset reference. The results of attack target prediction is displayed on the web screen and CyCOP(Cyber Common Operation Picture) to help both analysts and decision makers.

A study on Stage-Based Flow Graph Model for Expressing Cyber Attack Train Scenarios (사이버 공격 훈련 시나리오 표현을 위한 Stage 기반 플로우 그래프 모델 연구)

  • Kim, Moon-Sun;Lee, Man-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.1021-1030
    • /
    • 2021
  • This paper proposes S-CAFG(Stage-based Cyber Attack Flow Graph), a model for effectively describing training scenarios that simulate modern complex cyber attacks. On top of existing graph and tree models, we add a stage node to model more complex scenarios. In order to evaluate the proposed model, we create a complicated scenario and compare how the previous models and S-CAFG express the scenario. As a result, we confirm that S-CAFG can effectively describe various attack scenarios such as simultaneous attacks, additional attacks, and bypass path selection.

Feasibility Analysis on the Attack Graph Applicability in Selected Domains

  • Junho Jang;Saehee Jun;Huiju Lee;Jaegwan Yu;SungJin Park;Su-Youn Hong;Huy Kang Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.57-66
    • /
    • 2023
  • In this paper, a research trend of attack graph studies for Cyber-Physical System (CPS) environments is surveyed, and we analyse the limitations of previous works and prospect the future directions. 35 among around 150 attack graph studies conducted within 5 years target CPS, and we inspect key features of CPS environment in the security aspect. Also, we categorize and analyze target studies in the aspect of modelling physical systems and considering air gaps, which are derived as key features of the security aspects of CPS. Half of 20 research that we surveyed do not reflect those two features, and other studies only consider one of the two features. In this circumstance, we examine challenges that attack graph studies on CPS environment face. Finally, we expect state-led studies or studies targeting open-spec commercial CPS will dominate.

Vulnerable Path Attack and its Detection

  • She, Chuyu;Wen, Wushao;Ye, Quanqi;Zheng, Kesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2149-2170
    • /
    • 2017
  • Application-layer Distributed Denial-of-Service (DDoS) attack is one of the leading security problems in the Internet. In recent years, the attack strategies of application-layer DDoS have rapidly developed. This paper introduces a new attack strategy named Path Vulnerabilities-Based (PVB) attack. In this attack strategy, an attacker first analyzes the contents of web pages and subsequently measures the actual response time of each webpage to build a web-resource-weighted-directed graph. The attacker uses a Top M Longest Path algorithm to find M DDoS vulnerable paths that consume considerable resources when sequentially accessing the pages following any of those paths. A detection mechanism for such attack is also proposed and discussed. A finite-state machine is used to model the dynamical processes for the state of the user's session and monitor the PVB attacks. Numerical results based on real-traffic simulations reveal the efficiency of the attack strategy and the detection mechanism.

GCNXSS: An Attack Detection Approach for Cross-Site Scripting Based on Graph Convolutional Networks

  • Pan, Hongyu;Fang, Yong;Huang, Cheng;Guo, Wenbo;Wan, Xuelin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4008-4023
    • /
    • 2022
  • Since machine learning was introduced into cross-site scripting (XSS) attack detection, many researchers have conducted related studies and achieved significant results, such as saving time and labor costs by not maintaining a rule database, which is required by traditional XSS attack detection methods. However, this topic came across some problems, such as poor generalization ability, significant false negative rate (FNR) and false positive rate (FPR). Moreover, the automatic clustering property of graph convolutional networks (GCN) has attracted the attention of researchers. In the field of natural language process (NLP), the results of graph embedding based on GCN are automatically clustered in space without any training, which means that text data can be classified just by the embedding process based on GCN. Previously, other methods required training with the help of labeled data after embedding to complete data classification. With the help of the GCN auto-clustering feature and labeled data, this research proposes an approach to detect XSS attacks (called GCNXSS) to mine the dependencies between the units that constitute an XSS payload. First, GCNXSS transforms a URL into a word homogeneous graph based on word co-occurrence relationships. Then, GCNXSS inputs the graph into the GCN model for graph embedding and gets the classification results. Experimental results show that GCNXSS achieved successful results with accuracy, precision, recall, F1-score, FNR, FPR, and predicted time scores of 99.97%, 99.75%, 99.97%, 99.86%, 0.03%, 0.03%, and 0.0461ms. Compared with existing methods, GCNXSS has a lower FNR and FPR with stronger generalization ability.

Using Genetic Algorithm for Optimal Security Hardening in Risk Flow Attack Graph

  • Dai, Fangfang;Zheng, Kangfeng;Wu, Bin;Luo, Shoushan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1920-1937
    • /
    • 2015
  • Network environment has been under constant threat from both malicious attackers and inherent vulnerabilities of network infrastructure. Existence of such threats calls for exhaustive vulnerability analyzing to guarantee a secure system. However, due to the diversity of security hazards, analysts have to select from massive alternative hardening strategies, which is laborious and time-consuming. In this paper, we develop an approach to seek for possible hardening strategies and prioritize them to help security analysts to handle the optimal ones. In particular, we apply a Risk Flow Attack Graph (RFAG) to represent network situation and attack scenarios, and analyze them to measure network risk. We also employ a multi-objective genetic algorithm to infer the priority of hardening strategies automatically. Finally, we present some numerical results to show the performance of prioritizing strategies by network risk and hardening cost and illustrate the application of optimal hardening strategy set in typical cases. Our novel approach provides a promising new direction for network and vulnerability analysis to take proper precautions to reduce network risk.

Intrusion Detection on IoT Services using Event Network Correlation (이벤트 네트워크 상관분석을 이용한 IoT 서비스에서의 침입탐지)

  • Park, Boseok;Kim, Sangwook
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.24-30
    • /
    • 2020
  • As the number of internet-connected appliances and the variety of IoT services are rapidly increasing, it is hard to protect IT assets with traditional network security techniques. Most traditional network log analysis systems use rule based mechanisms to reduce the raw logs. But using predefined rules can't detect new attack patterns. So, there is a need for a mechanism to reduce congested raw logs and detect new attack patterns. This paper suggests enterprise security management for IoT services using graph and network measures. We model an event network based on a graph of interconnected logs between network devices and IoT gateways. And we suggest a network clustering algorithm that estimates the attack probability of log clusters and detects new attack patterns.