• Title/Summary/Keyword: attached strength

Search Result 345, Processing Time 0.027 seconds

INFLUENCES OF CAMPHOROQUINONE ON THE PROPERTIES OF COMPOSITES (Camphoroquinone이 복합레진의 특성에 미치는 영향)

  • 탁흥수;박상진
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.1
    • /
    • pp.41-50
    • /
    • 2001
  • The purpose of this study was to examine the influences of camphoroquinone on the properties of five experimental composites. The contents of camphoroquinone were varied as 0.2%, 0.3%, 0.4%, 0.5%, and 0.6%, with silanized filler 75% and tertiary amine 0.2%. Five kinds of experimental composites were prepared, and diametral tensile strength, shear bond strength, depth of cure and yellowish discoloration were tested as a measurement. Specimen numbers of 10 were applied to all test items and experimental groups. Specimens for testing the diametral tensile strengths with internal diameter of 6mm in diameter and 3mm in height were filled with 5 experimental composites which were crushed with 1mm/min cross-head speed on Instron universal testing machine (Model No. 4467). Shear bond strength was measured on specimens attached to bovine teeth enamel etched with 37% phosphoric acid. Depth of cure was measured by the measurement of height of specimens which were removed the un-polymerized portion with acetone. Yellowness measurements were made by chromometer(Minolta Co. Japan) using L$^*$a$^*$b$^*$ values. ANOVA and Multiple range tests were used analyzed data with confidence level at 95%. The mean value of the shear bond strengths ranged from 31.03MPa to 39.49MPa. Following results were obtained ; 1. Diametral tensile strength was highest in experimental group 3, then was not affected by the contents of camphoroquinone ($r^2$=0.0422). 2. Composite resins containing 0.4% camphoroquinone showed the highest shear bond strength, but there was no statistical significance (p=0.3718). 3. Camphoroquinone reduces the depth of cure in the composite resins (p=0.0004, $r^2$=0.9483). 4. Camphoroquinone made the composites yellowish ($r^2$=0.9815). These results mean that increased content of camphoroquinone reduces the depth of cure, and that camphoroquinone make composites yellowish.

  • PDF

Development of a laboratory testing method for evaluating the loading capability of lattice girder (격자지보재(Lattice Girder)의 실내성능평가기법 개발)

  • Kim, Dong-Gyou;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.371-382
    • /
    • 2008
  • The objective of this study is to develop the laboratory testing method for evaluating the loading capacity of lattice girder used for support in tunnel structure. 3-point flexible strength test and 4-point flexible strength test were performed on three types of lattice girder, such as $LG-50{\times}20{\times}30$, $LG-70{\times}20{\times}30$, and $LG-95{\times}22{\times}32$, mainly used in Korea. Two types of loading position for each flexible strength test were used to analyze the behavior of load-deformation. The loading distribution in the lattice girder was analyzed by means of strains measured by strain gauges attached on chords and diagonal bars. In 3-point flexible strength test, the difference of the average of maximum flexible strength according to loading position had the range from 10% to 33%. In 4-point flexible strength test, the average of maximum flexible strength according to loading position was almost no difference. The difference between the average of maximum flexible strengths obtained from 3-point and 4-point flexible strength tests was from 13.56 to 31.55%. The load applied on the lattice girder was concentrated to the main chord in 3-point flexible strength test. The load applied on the lattice girder in 4-point flexible strength test was distributed to three chords and diagonal bars.

  • PDF

Analysis about Flexural Strength of Steel Plate-Concrete Composite Beam using Folded Steel Plate (Cap) as Shear Connector (절곡 강판(Cap)을 전단연결재로 사용한 강판-콘크리트 합성보의 휨강도 분석)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.481-492
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, the SPC beam was composed of folding steel plates and concrete, without a headed stud. The folding steel plate was assembled by a high strength bolt instead of welding. To improve the workability in a field construction, a hat-shaped cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode to analyze the flexural strength of the SPC beam using a cap as the shear connector. Five specimens with shear connector types, protrusion length, and different thickness of steel plates were constructed and tested. The experimental results were analyzed through the relationship between the shear strength ratio and flexural strength in KBC 2009. The test results showed a shear strength ratio of more than 40 %. In the case of using a cap-like specimen as the shear connector, the flexural strength was 70% of the value calculated as a fully composite beam. In addition, the cap showed a smaller shear strength than the stud, but the cap served as a shear connection. When the thickness of the steel plate was taken as a variable, the steel plate exhibited a bending strength of approximately 70% compared to a fully formed steel plate, and exhibited similar deformation performance. Local buckling occurred due to incomplete composite behavior, but local buckling occurred at a 5% higher strength for a relatively thick steel plate. The buckling width also decreased by 15%.

FLEXURAL STRENGTH OF IMPLANT FIXED PROSTHESIS USING FIBER REINFORCED COMPOSITE (섬유성 강화 컴포지트를 사용한 임플랜트 고정성 보철물의 굴곡강도)

  • Kang, Kyung-Hee;Kwon, Kung-Rock;Lee, Sung-Bok;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.526-536
    • /
    • 2006
  • Statement of problem : Use of fiber composite technology as well as development of nonmetal implant prosthesis solved many problems due to metal alloy substructure such as corrosion. toxicity, difficult casting, expensiveness and esthetic limit. After clinical and laboratory test, we could find out that fiber-reinforced composite prostheses have good mechanical properties and FRC can make metal-free implant prostheses successful. Purpose : The purpose of this study is to evaluate the flexural strength of implant fixed prosthesis using fiber reinforced composite. Material and methods : 2-implant fixture were placed in second premolar and second molar area in edentulous mandibular model, and their abutments were placed, and bridge prostheses using gold, PFG, Tescera, and Targis Vectris were fabricated. Tescera was made in 5 different designs with different supplements. Group I was composed by 3 bars with diameter 1.0mm and 5 meshes, 2 bars and 5 meshes for Group II, 1 bar and 5 meshes for Group III, and only 5 meshes were used for Group IV. And Group V is composed by only 3 bars. Resin (Tescera) facing was made to buccal part of pontic of gold bridge. All of gold and PFG bridges were made on one model, 5 Targis Vectris bridges were also made on one model, and 25 Tescera bridges were. made on 3 models. Each bridge was attached to the test model by temporary cement and shallow depression was formed near central fossa of the bridge pontic to let 5 mm metal ball not move. Flexual strength was marked in graph by INSTRON. Results : The results of the study are as follows. The initial crack strength was the highest on PFG. and in order of gold bridge Tescera I, Tescera II, Targis vectris, Tescera IV, Tescera III, and Tescera V. The maximum strength was the highest on gold bridge, and in order of PFG, Tescera I, Tescera IV Tescera II, Targis vectris, Tescera III, and Tescera V. Conculsions : The following conclusions were drawn from the results of this study. 1. Flextural strength of implant prosthesis using fiber reinforced composite was higher than average posterior occlusal force. 2. In initial crack strength, Tescera I was stronger than Tescera V, and weaker than PFG. 3. Kinds and number of auxillary components had an effect on maximum strength, and maximum strength was increased as number of auxillary components increased. 4 Maximum strength of Tescera I was higher than Targis vectris, and lower than PFG.

A COMPARATIVE STUDY ON THE PROPERTIES OF FILLER-ADDED METHACRYLATE POLYMERS (필러를 배합한 메타크릴레이트 중합체의 물성에 관한 비교 연구)

  • Park Dong-Won;Choi Boo-Byong;Kwon Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.606-616
    • /
    • 2003
  • Purpose : The purpose of this study was to research the properties of some chemically cured methacrylate polymers such as MMA, HEMA, TEG-DMA, bis-GMA, GMA. Material and Method : 5 kinds of methacrylates were selected and added 2% tertiary amine and benzoyl peroxide to make a chemically curable polymer 25 micron crushed silicas which are treated with silane were selected as filler, they were added into methacrylate monomer until the consistency did not changed by the load of 500gram. All of the experimental resins were 5 kinds, and a serial test was done with 3 kinds of items including the filler contents, the tensile strength, and the bond strength. The number of specimen were 10 for each group. Filler contents were obtained by reducing the specimens to ashes at $600^{\circ}C$ for 1 hour. The specimens with the dimension of 6mm in diameter and 3mm thick were immersed in $37{\pm}1^{\circ}C$ distilled water for 24 hours before test, and tensile strength were measured with cross-head speed 1mm/min. Shear bond strength were mea sured on the specimens attached to bovine enamel etched with 37% phosphoric acid for 1 minute. Results : 1. Maximum filler incorporation was the highest as 75.5% on MMA, and the least as 53.4% on bis- GMA(p<0.0001). 2. The tensile stregth were MMA 141.3, GMA 154.3, TEG-DMA 157.4, bis-GMA 161.4 MPa, and HEMA showed the highest value, 226.9MPa(p = 0.0004). 3. The bond strength were GMA 10.1, TEG-DMA 11.7, HEMA 12.2, bis-GMA 13.3 MPa, and MMA showed the highest value, 15.3MPa, however statistical significances were not (p =0.3838), 4. TEG-DMA and HEMA were not different on the aspect of maximum filler contents and shear bond strength(p>0.05). Conclusion : HEMA can be used as an another diluent substituting TEG-DMA with the increased strength and with the constant bond strength and the constant filler contents.

REGIONAL MICRO-SHEAR BOND STRENGTH TO DENTIN:EFFECTS OF DENTINAL HARDNESS, POSITION, AND REMAINING DENTIN THICKNESS (상아질의 경도, 위치 및 잔존 상아질 후경이 상아질에 대한 부위별 미세 전단결합강도에 미치는 영향)

  • Hwang, Seon-Seong;Im, Mi-Kyung;Lee, Yong-Keun
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.401-412
    • /
    • 1998
  • The aim of this study was to measure the regional micro-shear bond strength of dentin bonding agents to dentin, and to investigate the relationship between the micro-shear bond strength and two dentinal characteristics ; Vickers hardness and remaining dentin thickness. Twenty-four freshly extracted, noncarious human molars were selected for this study. The materials tested in this study consisted of two commercially available dentin bonding agents (MAC-BOND, ONE-STEP) and two restorative light-cured composite resins (AELITEFIL, Z100). The occlusal or side surface of tooth crown was sectioned to expose dentin, and the exposed surface was finally polished with # 600 sandpaper. Four groups of application methods were used combining the filling materials and the dentin bonding agents. The composite resin-attached tooth specimens were embeded in a cold cure acrylic resin, and were cut with a low speed diamond saw to the dimension of 1mm $\times$ 1mm. Nine specimens were obtained from each tooth. The cut specimens were divided into three groups depending on the position of the dentin bonding surface. The micro-shear bond strength, remaining dentin thickness, and dentinal hardness were measured. Experimental results were then statistically analyzed with ANOVA. t-test, Scheffe test, and regression analysis. From this experiment, the following results were obtained : 1. In the case of occlusal surface bonding, the pooled micro-shear bond strength of ONST-AELIT group (16.62 MPa) was significantly higher than that of MACB-AELIT group (9.91 MPa) (p<0.05). However, there was no significant difference in the micro-shear bond strength depending on the dentin position (p>0.05). 2. In the case of side surface bonding of crown, the pooled micro-shear bond strength of four different bonding groups was not significantly different among each other (p>0.05). However, in three of the test groups (ONST-AELIT, MACB-Z100, ONST-Z100), the micro-shear bond strength to the lower 1/3(III) position was significantly lower than that to middle 1/3(II) position of surface (p<0.05). 3. In the ONST-AELIT bonding group, the pooled micro-shear bond strength to the occlusal surface was significantly lower than that to the side surface of crown (p<0.05). 4. There was no significant correlation between the micro-shear bond strength and dentin hardness / remaining dentin thickness (p>0.05).

  • PDF

Performance Evaluation of RC Slabs Strengthened by Stiff Type PolyUrea (경질형 폴리우레아로 보강된 RC 슬래브의 성능 평가)

  • Park, Jeong Cheon;Lee, Sang Won;Kim, Sung Bae;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.457-464
    • /
    • 2011
  • An experimental study was performed to evaluate the possibility of using stiff type PolyUrea(PU) on RC slab as a strengthening material. Stiff type PU(STPU) was sprayed on the bottom surface of the slab specimens, which were then attached with CFRP or GFRP sheets. Also the evaluation of the bond capacity, the single most influential parameter on strengthening of RC structures, was carried out the flexural capacity evaluation test results showed that the load carrying capacity of the PU specimen was greater and less than the unstrengthened and FRP sheet attached specimens, respectively. The STPU specimens showed a ductile flexural behavior in the plastic displacement range. With respect to bond capacity, the bond strength of all of the specimen exceeded the code required bond strength of 1.5 MPa. Also, the STPU sprayed specimen without using epoxy resin did not peel off when the tensile grip was applied for testing. The stability of the PU bond failure indicate a good bond strength of PU when applied to concrete.

Suggesting double-web I-shaped columns for omitting continuity plates in a box-shaped column

  • Saffari, Hamed;Hedayat, Amir A.;Goharrizi, Nasrin Soltani
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.585-603
    • /
    • 2013
  • Generally the required strength and stiffness of an I-shaped beam to the box-shaped column connection is achieved if continuity plates are welded to the column flanges from all sides. However, welding the forth edge of a continuity plate to the column flange may not be easily done and is normally accompanied by remarkable difficulties. This study was aimed to propose an alternative for box columns with continuity plates to diminish such problems. For this purpose a double-web I-shaped column was proposed. In this case the strength and rotational stiffness of the connection was provided by nearing the column webs to each other. Finite element studies on about 120 beam-column connections showed that the optimum proportion of the distance between two column webs and the width of the column flange (parameter ${\beta}$) was a function of the ratio of the beam flange width to the column flange width (parameter ${\alpha}$). Hence, based on the finite element results, an equation was proposed to estimate the optimum value of parameter ${\beta}$ in terms of parameter ${\alpha}$ to achieve the highest connection performance. Results also showed that the strength and ductility of post-Northridge connections of such columns are in average 12.5 % and 54% respectively higher than those of box-shaped columns with ordinary continuity plates. Therefore, a double-web I-shaped column of optimum arrangement might be a proper replacement for a box column with continuity plates when beams are rigidly attached to it.

Strength property improvement of OCC-based paper by chemical and mechanical treatments (3 - handsheet physical properties) (골판지 고지의 물리화학적 처리에 의한 강도향상 (제3보 - 수초지의 물리적특성변화))

  • Lee, Jong-Hoon;Seo, Yung B.;Jeon, Yang;Lee, Hak-Lae;Shin, Jong-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.04a
    • /
    • pp.70-70
    • /
    • 2000
  • This study is a continuation of the previous experimental analysis and is mostly focused on handsheet strength properties. Four completely different fibers, which were Hw-BKP, Sw-BKP, white ledger, and OCC, were selected to investigate the effect of mechanical pre-treatment by Hobart mixer on handsheet strength properties. After equal time mechanical pre-treatment, the fibers were refined with laboratory valley beater for 10, 20 and 30 minutes, and handsheets were prepared from the fibers for physical strength comparison. Handsheets from SW-BKP and OCC showed 5-30% increase of breaking length, burst index, tear index, and compression index while handsheets from HW-BKP and white ledger no Increase except tear index. In Hobart mixer pre-treatment, HW-BKP and white ledger fibers were easily attached to the wall of the mixer bowl and mechanical action was not effectively applied. The fiber length of Hw-BKP and white ledger were 0.837mm and 1.591 mm, respectively, while SW-BKP and OCC were 2.744 mn and 2.033 mm, respectively, in weight weighted length. The effective mechanical pre-treatment seems to be related to the fiber length. Tear indexes of the pre-treated furnish were much higher than no pre-treatment at the same breaking length level.

  • PDF

EFFECT OF SALIVARY CONTAMINATION OF TEETH ON MICROTENSILE BOND STRENGTH OF VAR10US DENTIN BONDING SYSTEMS. (타액에 의한 오염이 상아질 접착제의 미세전단결합강도에 미치는 영향)

  • Choi, Kyoung-Kyu;Ryu, Gil-Joo
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.3
    • /
    • pp.203-208
    • /
    • 2003
  • The purpose of this study was to evaluate the effect of salivary contamination of teeth on bonding efficacy of self-priming and self-etching DBSs. The materials used were Single Bond(SB, self-priming system, 3M), Unifil Bond(UB, self-etching system, GC), and Scotchbond Multi-Purpose Plus(SM, 3M) as control. Forty five human molars randomly allocated to three groups as dentin bonding systems tested and embedded in epoxy resin. Then the specimens were wet-ground to expose flat buccal enamel surface or flat occlusal dentin surface and cut bucco-lingually to form two halves with slow speed diamond saw. One of them was used under non-contamination, other under contamination with saliva. The bonding procedure was according to the manufacturer's directions and resin composite(Z-100, 3M Dental Products, St. Paul, MN) was built-up on the bonded surface 5mm high. The specimens were ground carefully at the enamel-composite interface with fine finishing round diamond bur to create an hour-glass shape yielding bonded surface areas of $1.5{\pm}0.1\textrm{mm}^2$. The specimens were bonded to the modified microtensile testing apparatus with cyanoacrylate, attached to the universal testing machine and stressed in tension at a CHS of 1mm/min. The tensile force at failure was recorded and converted to a tensile stress(MPa). Mean values and standard deviations of the bond strength are listed in table. One-way ANOVA was used to determine significant difference at the 95% level. The bond strength of SBMP and SB were not affected by salivary contamination, but that of UB was significantly affected by salivary contamination. These results indicate that DBSs with total etch technique seems less likely affected by salivary contamination in bonding procedure.