• 제목/요약/키워드: atomization

검색결과 1,362건 처리시간 0.023초

Butane 및 propane의 비정상 난류 제트 특성에 관한 연구 (A study on Behavior of Turbulent Transient Jets with Butane and Propane)

  • 이범호;송학현;조승환;홍성태;이대엽;이태우
    • 한국분무공학회지
    • /
    • 제15권2호
    • /
    • pp.74-82
    • /
    • 2010
  • In order to understand the behavior of transient gaseous injection used in an LPG (Liquefied Petroleum Gas) engine, turbulent incompressible transient jets with butane and propane were measured and analyzed at pressures of 1.5 bar and 2.0 bar with injector diameters of 3 mm and 5 mm. Mie-scattering method with a tracer was used, and images were processed to investigate the behavior of butane and propane jets. Distances from the nozzle to transition region were measured as $L_e/d_{inj}$=4.35~19.4, where $L_e$ and $d_{inj}$ indicate respectively a distance from nozzle to transition point and nozzle diameter. Slits and tubes around jet at near-field were introduced to measure the effect of entrainment and the diameter of jet, which revealed that the entrainment of surrounding air is significant for developing jet diameter. When the entrainment is restricted, the behavior of jet became deviating from the baseline. It was found that the virtual origin located outside of a nozzle towards jet tip within the conditions of this work, and its location was estimated as $x_o/d_{inj}$=0.56~7.25, where $x_o$ is a distance from nozzle to virtual origin.

대형 경유트럭의 NOx 저감장치에 따른 배출가스 특성비교 (Comparison on Exhaust Gas of Heavy Duty Diesel Trucks; THC and CO Emission Affected by NOx Control Devices (EGR, SCR))

  • 문선희;유흥민;손지환;윤창완;박규태;김정수;이종태
    • 한국분무공학회지
    • /
    • 제20권3호
    • /
    • pp.149-155
    • /
    • 2015
  • With increasing of GDP, the registration number of passenger cars has exceeded 20 million last year in Korea. Especially, the registration number of the diesel engine vehicles has been increasing. However, the WHO(World Health Organization) IARC (International Agency for Research on Cancer) has reported that diesel engine exhaust gas is an one of HAPs, which has carcinogenic for human, and they have designated it to Group 1. To solve this problem, exhaust gas from diesel engines has to be controlled. Thus, it has been controlling by European regulatory standard in Korea. On the other hand, in order to meet the enhanced emission regulations, all manufacturing company applied $NO_x$ control device to vehicles such as EGR (Exhaust Gas Recirculation), SCR (Selective Catalytic Reduction) and so on. However, these devices (EGR, SCR) were operated by difference reaction mechanism respectively, and the composition of exhaust gas would be differenced from that of them. In this study, it was conducted to evaluate variety characteristics on changing of exhaust gas composition by each $NO_x$ control device, and the heavy duty diesel trucks were chosen as experimental vehicles. From the result, it revealed that vehicles (with EGR) were discharged higher THC as 52.5% than that of others (with SCR). However, it did not followed that trend, in the case of CO; it was discharged as 57.2% lower than that of others (with SCR). In the future, these data would be used to apply to efficient $NO_x$ control device for meeting to EURO 6.

액체로켓엔진 연소기용 단일 분사기 연소기와 축소형 연수고 수류/연소시험 결과 비교 (Comparison of Combustion Performance between Single Injector Combustor and Sub-scale Combustor)

  • 김승한;한영민;서성현;문일윤;이광진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.451-454
    • /
    • 2006
  • This paper describes the results of cold flow test and hot firing tests of an uni-element coaxial swirl injector and hot firing tests of a subscale combustor, as to the development effort of coaxial swirl injector for high performance liquid rocket engine combustor. A major design parameter for coaxial swirl injector is the recess number of a bi-swirl injector. The results of hot firing tests of the uni-element injector combustor and the sub-scale combustor are analyzed to investigate the effect of the recess number influencing on the combustion performance and pressure fluctuation. The test results of a cold flow test of the unielement combustor shows that it was shown that the change in recess number has significant effect on mixing characteristics and efficiency, while the effect of recess number on atomization characteristic is not The results of a series of firing tests using unielement and subscale combustor show that the recess length significantly affects the hydraulic characteristics, the combustion efficiency, and the dynamics of the liquid oxygen/kerosene bi-swirl injector. As a point of combustion performance, combustion efficiencies are 90% for unielement combustor and 95% for subscale combustor. The difference in the characteristic velocities between the unielement combustor and the subscale combustor may be caused by the difference in thermal loss to the combustor wall and the relative lengths of the combustion chamber. For a mixed type coaxial swirl combustor, the pressure drop across the injector increases as recess number becomes larger. The low frequency pressure fluctuation observed in unielement combustor can be related to the propellant mixing characteristics of the coaxial bi-swirl injector. The effect of the recess number on the pressure fluctuation inside the combustion chamber is more significant in un i-element combustor than the subscale combustor, of which the phenomena are also observed in time domain and frequency domain.

  • PDF

분무성형공정에 의한 세라믹미립자 강화형 금속간화합물 복합재료의 고온파괴거동 (High Temperature Fracture Mechanisms in Monolithic and Particulate Reinforced Intermetallic Matrix Composite Processed by Spray Atomization and Co-Deposition)

  • 정강;김두환;김호경
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1713-1721
    • /
    • 1994
  • Intermetallic-matrix composites(IMCs) have the potential of combing matrix properties of oxidation resistance and high temperature stability with reinforcement properties of high specific strength and modulus. One of the major limiting factors for successful applications of these composite at high temperatures is the formation of interfacial reactions between matrix and ceramic reinforcement during composite process and during service. The purpose of the present investigation is to develop a better understanding of the nature of creep fracture mechanisms in a $Ni_{3}Al$ composite reinforced with both $TiB_{2}$ and SiC particulates. Emphasis is placed in the roles of the products of the reactions in determining the creep lifetime of the composite. In the present study, creep rupture specimens were tested under constant ranging from 180 to 350 MPa in vacuum at $760^{\cric}C$. The experimental data reveal that the stress exponent for power law creep for the composite is 3.5, a value close to that for unreinforced $Ni_{3}Al$. The microstructural observations reveal that most of the cavities lie on the grain boundaries of the $Ni_{3}Al$ matrix as opposed to the large $TiB_{2}/Ni_{3}Al$ interfaces, suggesting that cavities nucleate at fine carbides that lie in the $Ni_{3}Al$ grain boundaries as a result of the decomposition of the $SiC_{p}$. This observation accounts for the longer rupture times for the monolicthic $Ni_{3}Al$ as compared to those for the $Ni_{3}Al/SiC_{p}/TiB_{2} IMC$. Finally, it is suggested that creep deformation in matrix appears to dominate the rupture process for monolithic $Ni_{3}Al$, whereas growth and coalescence of cavities appears to dominate the rupture process for the composite.

선박 디젤유 및 선박 디젤유 에멀젼을 이용한 자동차용 디젤엔진의 연소특성 (Combustion Characteristics of MDO and MDO Emulsion in Automotive Diesel Engine)

  • 박진규;오정모;김형익;이창희;이기형
    • 대한기계학회논문집B
    • /
    • 제36권9호
    • /
    • pp.945-951
    • /
    • 2012
  • 물 에멀젼 연료는 연소과정 중 물의 기화에 따른 증발잠열 흡수로 인한 연소온도 저하와 급격한 증발에 의한 미소폭발로 인하여 연료가 미립화되어 NOx와 Soot의 동시 저감이 가능하고, 전처리 및 후처리 기술과 달리 추가적인 장치가 필요하지 않으며, 별도의 개조 없이 기존 디젤엔진에 사용 가능하므로 이에 관한 연구가 주목 받고 있다. 또한 국제유가가 상승함에 따라 기존에 사용되는 연료보다 저등급의 연료를 엔진에 사용하기 위한 적용가능성에 대한 연구가 요구되고 있다. 따라서 본 연구는 기존의 경유보다 저 등급인 선박 디젤유와 물과 선박 디젤유를 혼합한 유중수적형(W/O:water in oil)의 선박 디젤유 에멀젼 연료를 자동차 디젤엔진에 적용하여 기본 연소특성 및 배기특성을 파악하였다.

2상 내부 혼합형 노즐분사에서 ALR 변화에 따른 액적의 거동 (On the Behavior of Liquid Droplets Depending upon ALR in Two-phase Internal Mixing Nozzle Jet)

  • 김규철;남궁정환;이상진;노병준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.385-388
    • /
    • 2002
  • The researches of a two-phase atomizers have been carried out in the field of automotive and aerospace industries in order to improve the atomization performance of the liquid droplets ejecting from these nozzles. The smaller droplets have the advantages of the reduction of environmental pollution matter and effective use of energy through the improvement of heat and mass transfer efficiency. Thus, to propose the basic information of two-phase flow, an internal mixing atomizer was designed, its shape factor was 0.6 and the liquid feeding hole was positioned at the center of the mixing tube which was used to mix the air and liquid. The experimental work was performed in the field after the nozzle exit orifice. The measurement of the liquid droplets was made by PDPA system. This system can measure the velocity and size of the droplets simultaneously. The number of the droplets used in this calculation was set to 10,000. The flow patterns were regulated by ALR (Air to Liquid mass Ratio). ALR was varied from 0.1024 to 0.3238 depending on the mass flow rate of the air. The analysis of sampling data was mainly focused on the spray characteristics such as flow characteristics distributions, half-width of spray, RMS, and turbulent kinetic energy with ALR.

  • PDF

스월형 분사기 분무 예측 모델에서의 격자 의존성 연구 (Study of Grid Dependency of Sheet Atomization Model of a Pressure-Swirl Atomizer)

  • 문윤완;설우석;윤영빈
    • 대한기계학회논문집B
    • /
    • 제34권9호
    • /
    • pp.817-824
    • /
    • 2010
  • 본 연구에서는 개선된 액막 분열 모델을 개발하였고 그에 따른 계산격자 의존성을 고찰하였다. 액막 및 액적 추적을 위해 라그랑지-오일러 액적 추적 모델을 사용하였기 때문에 계산격자의 크기에 한계가 있으므로 매우 작은 격자를 사용하는데 제약을 받는다. 또한 유동장내로의 분사기의 액막 주입 시선회유동이 존재하므로 선회 유동을 정확히 예측하기 위해서는 계산격자가 충분히 작아야 한다. 이러한 상반된 조건으로부터 두 목적을 달성하기 위해 10$\times$10mm부터 0.625$\times$0.625mm까지 다양한 계산격자를 구성하여 수치적 고찰을 수행하였고 가장 효율적인 격자의 크기는 1.25$\times$1.25mm인 것을 알 수 있었다.

과산화수소/케로신을 이용한 다중 분사기 엔진 설계 및 수류 실험 (Design and Cold Flow Test of a Multi-injector Engine using Hydrogen Peroxide/Kerosene)

  • 이양석;전준수;고영성;김유;김선진
    • 한국추진공학회지
    • /
    • 제16권1호
    • /
    • pp.36-44
    • /
    • 2012
  • 친환경 추진제인 고농도 과산화수소와 케로신을 추진제로 사용하는 다중 분사기 액체 로켓 엔진을 설계하였다. 엔진의 설계 요구 조건을 결정한 후 엔진의 주요 형상 치수를 이론적인 배경을 통하여 결정하였다. 다중 분사기는 6개의 분사기를 장착하였으며, 상용 해석 툴을 이용하여 과산화수소 매니폴드 내의 유동 해석을 수행하여 매니폴드 내에서 균일한 유량분포 및 냉각성능 확보를 위해 유동 정체 구간과 재순환 영역을 최소화하였다. 매니폴드 유동장 해석 결과를 바탕으로 유동이 최적화 되는 다중 분사기를 제작하였으며, 수류 실험을 통하여 추진제의 유량, 분무각 및 분무 성능을 확인하였다.

분사조건에 따른 가솔린 직접분사용 다공 분사기에서의 LPG 분무특성 (LPG Spray Characteristics in a Multi-hole Injector for Gasoline Direct Injection)

  • 정진영;오희창;배충식
    • 한국분무공학회지
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Liquefied petroleum gas (LPG) is regarded as an alternative fuel for spark ignition engine due to similar or even higher octane number. In addition, LPG has better fuel characteristics including high vaporization characteristic and low carbon/hydrogen ratio leading to a reduction in carbon dioxide emission. Recently, development of LPG direct injection system started to improve performance of vehicles fuelled with LPG. However, spray characteristics of LPG were not well understood, which is should be known to develop injector for LPG direct injection engines. In this study, effects of operation condition including ambient pressure, temperature, and injection pressure on spray properties of n-butane were evaluated and compared to gasoline in a multi-hole injector. As general characteristics of both fuels, spray penetration becomes smaller with an increase of ambient pressure as well as a reduction in the injection pressure. However, it is found that evaporation of n-butane was faster compared to gasoline under all experimental condition. As a result, spray penetration of n-butane was shorter than that of gasoline. This result was due to higher vapor pressure and lower boiling point of n-butane. On the other hand, spray angle of both fuels do not vary much except under high ambient temperature conditions. Furthermore, spray shape of n-butane spray becomes completely different from that of gasoline at high ambient temperature conditions due to flash boiling of n-butane.

노후 운행경유차의 NOx 배출특성분석 및 조기폐차대책을 통한 삭감 방안 검토 (Evaluation of Accelerated Retirement Program for In-use Diesel Vehicles based on their NOx Emission Characteristics)

  • 길지훈;임윤성;김형준;노현구;윤보섭;이상은;이태우;김정수;최광호
    • 한국분무공학회지
    • /
    • 제22권3호
    • /
    • pp.122-128
    • /
    • 2017
  • Currently, the proportion of diesel vehicles in all automobile has grown significantly over the past few years. Air pollutant also grew up and became a social problem. In particular, the issue of NOx emissions caused by NOx high emission in real driving has become a global issue. Despite the fact that the regulatory and reduction project of the new vehicle is actively carried out, there are no existence regulations of In-use diesel vehicle's NOx emission. Therefore, the emission characteristics of the in-use diesel vehicles were investigated to seek ways to reduce NOx emissions in this study. The test targets were used in 237 close inspection of exhaust gases and model year varied from 1996 to 2011. However, the classification of emissions by emission standards differed considerably from NOx emissions. This means that the selection method for early retirement targets should be converted from model year to amount of emissions. If the current early retirement program was applied to the existing system, pre-Euro 3 was 22.530 g/km and Euro 4 was 21.810 g/km to NOx reduction. However, when the vehicle was changed to high emission target vehicle, NOx reduction increase maximum 84.705 kg/yr. According to the study results, an effective reduction in NOx emissions can be achieved if an earlier target in expanded to Euro 4 vehicles.