DOI QR코드

DOI QR Code

Study of Grid Dependency of Sheet Atomization Model of a Pressure-Swirl Atomizer

스월형 분사기 분무 예측 모델에서의 격자 의존성 연구

  • Moon, Yoon-Wan (Rocket Engine Dept., Korea Aerospace Research Institute) ;
  • Seol, Woo-Seok (Rocket Engine Dept., Korea Aerospace Research Institute) ;
  • Yoon, Young-Bin (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 문윤완 (한국항공우주연구원 발사체엔진팀) ;
  • 설우석 (한국항공우주연구원 발사체엔진팀) ;
  • 윤영빈 (서울대학교 기계항공공학부)
  • Received : 2009.12.30
  • Accepted : 2010.07.07
  • Published : 2010.09.01

Abstract

An improved spray model of a pressure-swirl atomizer was developed and the grid dependency of the model was investigated. Since the Lagrangian-Eulerian approach was adopted for tracking droplets, very small grids could not be used. However, in order to detect swirl flow accurately, small grids were needed because of the consideration of swirl injection. In order to overcome these limitations, numerical studies were performed by using various grids with cell sizes ranging from 10.0 $\times$ 10 mm to 0.625 $\times$ 0.625 mm. From these calculated results, it was observed that the most efficient grid cell size was 1.25 $\times$ 1.25 mm.

본 연구에서는 개선된 액막 분열 모델을 개발하였고 그에 따른 계산격자 의존성을 고찰하였다. 액막 및 액적 추적을 위해 라그랑지-오일러 액적 추적 모델을 사용하였기 때문에 계산격자의 크기에 한계가 있으므로 매우 작은 격자를 사용하는데 제약을 받는다. 또한 유동장내로의 분사기의 액막 주입 시선회유동이 존재하므로 선회 유동을 정확히 예측하기 위해서는 계산격자가 충분히 작아야 한다. 이러한 상반된 조건으로부터 두 목적을 달성하기 위해 10$\times$10mm부터 0.625$\times$0.625mm까지 다양한 계산격자를 구성하여 수치적 고찰을 수행하였고 가장 효율적인 격자의 크기는 1.25$\times$1.25mm인 것을 알 수 있었다.

Keywords

References

  1. Moon, Y. and Seol, W.-S., 2007, "Development and Validation of Spray Model of Coaxial Swirl Injector Installed in Liquid Propellant Rocket Engine," J. of KSPE, Vol. 11, No. 5, pp. 37-50.
  2. Senecal, P.K., Schmidt, D.P., Nouar, I., Rutland, C.J., Reitz, R.D. and Corradini, M.L., 1999, "Modeling High-Speed Viscous Liquid Sheet Atomization," Intl. J. of Multiphase Flow, Vol. 25, pp. 1073-1097. https://doi.org/10.1016/S0301-9322(99)00057-9
  3. Rizk, N. K. and Lefebvre, A. H., 1980, "The Influence of Liquid Film Thickness on Airblast Atomization," J. of Engineering for Power, Vol. 102, No. 3, pp. 706-710. https://doi.org/10.1115/1.3230329
  4. Inamura, T., Tamura, H. and Sakamoto, H., 2003, "Characteristics of Liquid Film and Spray Injected from Swirl Coaxial Injector," J. of Propulsion and Power, Vol. 19, No. 4, pp. 632-639. https://doi.org/10.2514/2.6151
  5. Bayvel, L. and Orzechowski, Z., 1993, Liquid Atomization, Taylor & Francis.
  6. Zong, N. and Yang, V., 2006, "Cryogenic Fluid Jets and Mixing Layers in Transcritical and Supercritical Environments," Combust. Sci. and Tech., Vol. 178, pp. 193-227. https://doi.org/10.1080/00102200500287613
  7. Dityakin, Yu. F., Klyachko, L. A., Novikov, B. V. and Yagodkin, V. I., 1977, Liquid Atomization, Machnostroenie, Moscow, (in Russian).
  8. Dombrowski, N and Johns, W. R., 1963, "The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets," Chem. Eng. Sci., Vol. 18, pp. 203-214. https://doi.org/10.1016/0009-2509(63)85005-8
  9. Amsden, A. A., O'Rourke, P. J. and Butler, T. D., 1989, KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays, Los Alamos National Laboratory, LA-11560-MS.
  10. Schmidt, D.P. and Rutland, C.J., 2004, "Reducing Grid Dependency in Droplet Collision Modeling," J. Engineering for Gas Turbines and Power, Vol. 126, pp. 227-233. https://doi.org/10.1115/1.1564066
  11. Karlsson, J.A.J, 1995, Modeling Auto-Ignition, Flame Propagation and Combustion in Non- Stationary Turbulent Sprays, Ph.D. Dissertation, Chalmers University of Technology, Sweden.
  12. Kim, D., Im, J.-H., Khil, T., Han, P and Yoon, Y., 2006, "Spray Breakup Characteristics of a Swirl Injector in High Pressure Environments," J. of KSAS, Vol. 34, No. 7. pp. 97-104. https://doi.org/10.5139/JKSAS.2006.34.7.097