DOI QR코드

DOI QR Code

Effect of Adiabatic Sidewalls on Natural Convection in a Rectangular Cavity

사각공동내 자연대류에서 측면 단열벽에 의한 영향

  • Heo, Jeong-Hwan (Dept. of Nuclear and Energy Engineering, Jeju Nat'l Univ.) ;
  • Chung, Bum-Jin (Dept. of Nuclear and Energy Engineering, Jeju Nat'l Univ.)
  • 허정환 (제주대학교 에너지 공학과) ;
  • 정범진 (제주대학교 에너지 공학과)
  • Received : 2010.03.09
  • Accepted : 2010.07.21
  • Published : 2010.09.01

Abstract

In this study, we investigated the effects of adiabatic walls on natural convection in various rectangular cavities experimentally and numerically. Heat transfer rates were measured for cavities with and without adiabatic sidewalls by varying Grashof number from $1.53\times10^7$ to $1.01\times10^{10}$. Some typical test results were successfully simulated using FLUENT. In the case of very narrow cavities, where the adiabatic walls were very close to each other, it was difficult to perform experiments; therefore, FLUENT simulations were performed. The existing heat transfer correlations for rectangular cavities were well predicted by the experimental and numerical results. As expected, the effects of adiabatic walls were restricted to the very narrow region near the walls. This study was carried out during the development of an analogy experimental method in which heat-transfer systems are replaced with mass-transfer systems using copper sulfate electroplating systems. The results of this study provide theoretical background of handling adiabatic walls during the design of test facilities.

사각공동내 자연대류 열전달 실험에서, 단열벽에 의해 열전달이 저하가 관찰되는 영역을 실험적으로 그리고 수치해석적으로 평가하였다. $Gr_H$$1.53\times10^7$부터 $1.01\times10^{10}$까지 변화시키며, 단열벽이 존재할 때와 그렇지 않을 때를 구분하여 열전달률을 측정하였다. FLUENT 실험의 결과를 예측할 수 있는지 확인하고 실험으로 수행하기 어려운 매우 좁은 영역에 대해 FLUENT를 수행하였다. 실험과 FLUENT의 결과를 다른 연구와 비교한 바 일치함을 보였다. 단열벽이 전체 열전달에 미치는 영향은 예상과 같이 단열벽 근처의 매우 좁은 영역에 국한하여 나타남을 확인하였다. 본 연구는 유사성(Analogy) 원리를 이용하여 열전달계를 전기도금계의 물질전달계로 모사하는 방법론을 개발하는 과정에서 실험을 효율화하고자 하는 방안을 강구하기 위하여 추진되었다. 본 연구를 통하여 단열벽간 거리(전극의 폭)를 매우 줄일 수 있는 이론적 근거를 확보하였다.

Keywords

References

  1. Hsieh, S. S. and Wang, C. Y., 1994, "Experimental Study of Three-Dimensional Natural Convection in Enclosures with Different Working Fluids," Int. J. Heat Mass Transfer, Vol. 37, pp. 2687-2698. https://doi.org/10.1016/0017-9310(94)90385-9
  2. Ostrach, S., 1972. "Natural Convection in Enclosures," Advances in Heat Transfer, Vol. 8, Chap. 3, Academic Press.
  3. Batchelor, G. K., 1954, "Heat Transger by Free Convection Across a Closed Cavitu Between Vertical Boundaries at Different Temperature," Q. Appl. Math., vol. 12, pp. 209-233. https://doi.org/10.1090/qam/64563
  4. Mallinson, G. D., and De Vahl Davis, G. 1977, "Three-Dimensional Natural Convection in a Box: A Numerical Study," J. Fluid Mech. 83, 1
  5. Drew, T. B., Cokelet, G. R. and Hoopes, J. W., 1978, Vermeulen, Advances in Chemical Engineering, Vol. 10.
  6. Catton, I., 1972, "Natural Convection in Enclosures," in Hartnett, J.P. and Irvine, T.F., Eds., Advances in Heat Transfer, Vol. 8, Academic Press, New York, pp. 161-227. https://doi.org/10.1016/S0065-2717(08)70039-X
  7. Hsieh, S. S. and Wang, C. Y., 1994, "Experimental Study of Three-Dimensional Natural Convection in Enclosures with Different Working Fluids," Int. J. Heat Mass Transfer, Vol. 37, 99. 2687-2698. https://doi.org/10.1016/0017-9310(94)90385-9
  8. Nobuhiro, S., Shoichiro, F. and Hideo, I., 1978, "Heat Transfer of Natural Convection in a Rectangular Cavity with Vertical Walls of Different Temperatures," Bulletin of the JSME, Vol. 21, No. 152, February, pp. 246-253 https://doi.org/10.1299/jsme1958.21.246
  9. Markatos, N. C. and Pericleous, K. A., 1984, "Laminar and Turbulent Natural Convection in an Enclosed Cavity," Int. J. Heat Mass Transfer, Vol. 27, pp. 755-772. https://doi.org/10.1016/0017-9310(84)90145-5
  10. Xamanb, J., Alvareza, G., Liraa, L. and Estradac, C., 2005, "Numerical Study of Heat Transfer by Laminar and Turbulent Natural Convection in Tall Cavities of Facade Elements," Energy and Buildings, Vol. 37, Issue 7, pp. 787-794. https://doi.org/10.1016/j.enbuild.2004.11.001
  11. Jacob, M., 1949, Heat Transfer, Vol. 1, Wiley, New York.
  12. Bejan, A., 1994, "Convection Heat Transfer," 2nd., John Wiley & Sons, INC, New York, pp. 466-514.
  13. Ko, S.-H., Moon, D.-W. and Chung, B.-J., 2006, "Applications of Electroplating Method for Heat Transfer Studies Using Analogy Concept," Nuclear engineering and technology, Vol. 38. 251-258.
  14. Levich, V. G., 1962, Physicochemical Hydrodynamics, Prentice-Hall, Englewood.
  15. Selman, J. R. and Tovias, C. W., 1978, "Mass Transfer Measurement by the Limiting Current Technique," Adv. Chem. Eng. Vol. 10, pp. 211-318 https://doi.org/10.1016/S0065-2377(08)60134-9
  16. Kang, K.-U. and Chung, B.-J., 2010, "The Effects of the Anode Size and Position on the Limiting Currents of Natural Convection Mass Transfer Experiments in a Vertical Pipe," Transactions of the KSME (B), Vol. 34, No. 1, pp.1-8. https://doi.org/10.3795/KSME-B.2010.34.1.1
  17. Ko, B.-J. and Chung, B.-J., 2010, "Study on the Laminar Mixed Convection of Developing Flow in a Vertical Pipe, Vol. 34, No. 5, in progress. https://doi.org/10.3795/KSME-B.2010.34.5.481