• Title/Summary/Keyword: atomic block

Search Result 115, Processing Time 0.022 seconds

The Reconstructive Method for The Enhancement of Depth Resolution for Acoustic Image using the Spatial Frequency Response in NPPs' Material (NPP 매질내에서 공간주파수 응답을 이용한 초음파 영상의 깊이 분해능 개선을 위한 복원 방법)

  • Koo, Gil-mo;Kim, Hyun;Park, In-ho
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.426-433
    • /
    • 2002
  • In this paper, we have studied the images which have been reconstructed by using combination of images acquired by the variation of operating frequency. When inner images have been reconstructed, they have been superposed by the surface state effect. In this case, the images of the phase object can be enhanced by the contrast of inner images. In this experiment, there are two kinds of specimens, one is a reference block haying 1/4T, 1/2T, 3/4T side drilled holes as main run piping material 111 the steam generator in NPP(Neuclear Power Plant)s and the another is a part of a hemisphere type specimen having about 1-2㎜ distance gap. It has been shown that the two results of defect shapes have better than before in this processing and phase contrast grow about twice. And we have constructed the acoustic microscope by using a quadrature detector that enables to acquire the amplitude and phase of the reflected signal simultaneously Further more ore have studied the reconstruction method of the amplitude and phase images and the enhancement method of the defect images contrast.

  • PDF

Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills (다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

Bone formation following dental implant placement with augmentation materials at dehiscence defects in dogs : pilot study (성견의 열개형 골결손 부위에 골형성 유도술식을 동반한 임플란트 식립 후의 골형성 : pilot study)

  • Jeong, Ji-Yun;Sohn, Joo-Yeon;Chai, Kyung-Jun;Kim, Sung-Tae;Chung, Sung-Min;Lee, In-Seop;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.191-198
    • /
    • 2008
  • Purpose: Guided bone regeneration(GBR) has emerged as a treatment in the management of osseous defects associated with dental implants. But several studies have reported different degrees of success of guided bone regeneration, depending upon the type of barrier selected, presence or absence of an underlying graft material, types of graft material, feasibility of technique, and clinician's preference. The aim of the present study was to evaluate bone formation following dental implant placement with augmentation materials at dehiscence defects in dogs. Material and Methods: Standardized buccal dehiscence defects($3{\times}5\;mm$) were surgically 2 Mongrel dog's mandibles, each 8 SLA surface, 8 anodizing surface implants. Each buccal dehiscence defect received flap surgery only(no treatment, control), $Cytoflex^{(R)}$ membrane only, Resolut $XT^{(R)}$ membrane only, Resolut $XT^{(R)}+Osteon^{TM}$. Animals were sacrificed at 8 weeks postsurgery and block sections were harvested for histologic analysis. Resuts: All experimental group resulted in higher bone formation than control. Resolut $XT^{(R)}+Osteon^{TM}$ group resulted appeared highest defect resolution. There was no difference between SLA and anodizing surface, nonresorbable and resorbable membrane. Conclusion: GBR results in rapid and clinically relevant bone closure on dehiscence defects of the dental implants.

Evaluation of Shielding Performance of 3D Printer Materials for High-energy Electron Radiation Therapy (고 에너지 전자선 치료를 위한 3D 프린터 물질의 차폐 성능평가)

  • Chang-Woo, Oh;Sang-Il, Bae;Young-Min, Moon;Hyun-Kyoung, Yang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.687-695
    • /
    • 2022
  • To find a 3D printer material that can replace lead used as a shield for high-energy electron beam treatment, the shielding composites were simulated by using MCNP6 programs. The Percent Depth Dose (PDD), Flatness, and Symmetry of linear accelerators emitting high-energy electron beams were measured, and the linear accelerator was compared with MCNP6 after simulation, confirming that the source term between the actual measurement and simulation was consistent. By simulating the lead shield, the appropriate thickness of the lead shield capable of shielding 95% or more of the absorbed dose was selected. Based on the absorption dose data for lead shield with a thickness of 3 mm, the shielding performance was analyzed by simulating 1, 5, 10, and 15 mm thicknesses of ABS+W (10%), ABS+Bi (10%), and PLA+Fe (10%). Each prototype was manufactured with a 3D printer, measured and analyzed under the same conditions as in the simulation, and found that when ABS+W (10%) material was formed to have a thickness of at least 10mm, it had a shielding performance that could replace lead with a thickness of 3mm. The surface morphology and atomic composition of the ABS+W (10%) material were evaluated using a scanning electron microscope (SEM) and an energy dispersive X-ray spectrometer (EDS). From these results, it was confirmed that replacing the commercialized lead shield with ABS+W (10%) material not only produces a shielding effect such as lead, but also can be customized to patients using a 3D printer, which can be very useful for high-energy electron beam treatment.

Change of Hydraulic Characteristics due to Well Drilling and Well Development in an Unconsolidated Aquifer (미고결대수층에서 우물 굴착 및 개량에 의한 대수층의 수리특성 변화)

  • Kim, Byung-Woo;Kim, Gyoo-Bum;Kim, Geon-Young
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.27-37
    • /
    • 2012
  • To investigate the effect of aquifer disturbance on hydraulic properties while well drilling at unconsolidated aquifer, the following tests were conducted: the surge block and air-surging methods, which are well development methods used after well drilling; and step-drawdown tests and constant-rate pumping tests, which are used to assess changes in the aquifer after well drilling and development. The result of step-drawdown tests indicated that drawdown for a pumping-rate of $700m^3/day$ was 21.62 m after well development, decreasing 4.39 m from 26.01 m after well drilling. The skin factor used to identify the well properties decreased from 7.92 after well drilling to 5.04 after well development, respectively, which shows the improvement of well. Constant-rate pumping tests revealed a small increase in aquifer transmissivity after well development at MW-2, -3, and -4, centering around pumping well, from $1.684{\times}10^{-3}{\sim}4.490{\times}10^{-3}m^2/sec$ to $4.002{\times}10^{-3}{\sim}4.939{\times}10^{-3}m^2/sec$. MW-1, however, showed decline in hydraulic conductivity from $1.018{\times}10^{-2}m^2/sec$ to $6.988{\times}10^{-3}m^2/sec$, which was caused by a small decrease of aquifer permeability around monitoring well MW-1 due to latent factor of air interception and clogging in aquifer during surging. This finding indicates that fine particles have an effect on hydraulic properties at unconsolidated aquifers during well drilling; therefore, we consider that well drilling and development have an effect on hydraulic properties.