• 제목/요약/키워드: atmospheric modeling (WRF)

검색결과 34건 처리시간 0.033초

동아시아 WRF-Hydro 구축 및 평가 (Development and assessment of WRF-Hydro in East Asia)

  • 이재형;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.425-425
    • /
    • 2022
  • 동아시아 지역은 몬순 영향으로 계절적인 수자원 변동성이 매우 크고 홍수 및 가뭄과 같은 수재해 피해가 빈번히 발생하고 추세이다. 본 연구에서는 동아시아의 수자원 관리에 활용하기 위해 수문 모형 중 하나인 WRF-Hydro (Weather Research and Forecast and Model Hydrological modeling extension package) 모형을 구축하였다. WRF-Hydro 모형은 미국 NCAR (National Center for Atmospheric Research)에서 개발된 커뮤니티형 고해상도 예측모델로 미국 등에서 활발히 사용되고 있으나, 동아시아 지역에 적용된 연구는 없다. 따라서 모형의 동아시아 적용 가능성에 대한 불확실성이 높다. 본 연구에서는 WRF-Hydro 모형을 0.25°의 공간해상도로 동아시아 대상으로 구축하였고, 기상 및 지면 특성과 유역자료를 활용한 머신러닝 방법으로 파라미터 보정을 시행하여 2006년부터 2015년까지 구동하였다. 머신러닝을 통해 지역특성이 고려된 WRF-Hydro 모형은 표면유출, 보수깊이, 표면 거칠기, 표면 기울기와 같은 매개변수를 보정하였다. 모형 평가를 위해 GRDC (Global Runoff Database Center (GRDC), GLDAS (Global Land Data Assimilation System), ESA-CCI (European Space Agency Climate Change Initiative), MODIS (Moderate Resolution Imaging Spectroradiometer)에서 제공하는 관측 유출량, 토양수분, 증발산량을 비교, 분석하여 동아시아 적용 적절성에 대해 검토하였다.

  • PDF

WRF 모형에서 한반도 여름철 강수 예측에 모의영역이 미치는 영향 (Effect of Model Domain on Summer Precipitation Predictions over the Korean Peninsula in WRF Model)

  • 김형규;이혜영;김주완;이승우;부경온;이송이
    • 대기
    • /
    • 제31권1호
    • /
    • pp.17-28
    • /
    • 2021
  • We investigated the impact of domain size on the simulated summer precipitation over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two different domains are integrated up to 72-hours from 29 June 2017 to 28 July 2017 when the Changma front is active. The domain sizes are adopted from previous RDAPS (Regional Data Assimilation and Prediction System) and current LDAPS (Local Data Assimilation and Prediction System) operated by the Korea Meteorological Administration, while other model configurations are fixed identically. We found that the larger domain size showed better prediction skills, especially in precipitation forecast performance. This performance improvement is particularly noticeable over the central region of the Korean Peninsula. Comparisons of physical aspects of each variable revealed that the inflow of moisture flux from the East China Sea was well reproduced in the experiment with a large model domain due to a more realistic North Pacific high compared to the small domain experiment. These results suggest that the North Pacific anticyclone could be an important factor for the precipitation forecast during the summer-time over the Korean Peninsula.

WRF-CMAQ 결합모델을 이용한 에어로졸 피드백 효과가 한반도 일사량에 미치는 영향 연구 (Effect of Aerosol Feedback on Solar Radiation in the Korean Peninsula Using WRF-CMAQ Two-way Coupled Model)

  • 유정우;박순영;전원배;김동혁;이화운;이순환;김현구
    • 한국대기환경학회지
    • /
    • 제33권5호
    • /
    • pp.435-444
    • /
    • 2017
  • In this study, we investigated the effect of aerosol feedback on $PM_{10}$ simulation using a two-way coupled air quality model (WRF-CMAQ). $PM_{10}$ concentration over Korea in January 2014 was simulated, and the aerosol feedback effect on the simulated solar radiation was intensively examined. Two $PM_{10}$ simulations were conducted using the WRF-CMAQ model with (FB) and without(NFB) the aerosol feedback option. We find that the simulated solar radiation in the west part of Korea decreased by up to $-80MJ/m^2$ due to the aerosol feedback effect. The feedback effect was significant in the west part of Korea, showing high $PM_{10}$ estimates due to dense emissions and its long-range transport from China. The aerosol feedback effect contributed to the decreased rRMSE(relative Root Mean Square Error) for solar radiation (47.58% to 30.75%). Aerosol feedback effect on the simulated solar radiation was mainly affected by concentration of $PM_{10}$. Moreover, FB better matched the observed solar radiation and $PM_{10}$ concentration than NFB, implying that taking into account the aerosol direct effects resulted in the improved modeling performance. These results indicate that aerosol feedback effects can play an important role in the simulation of solar radiation over Korean Peninsula.

Development of a Dynamic Downscaling Method for Use in Short-Range Atmospheric Dispersion Modeling Near Nuclear Power Plants

  • Sang-Hyun Lee;Su-Bin Oh;Chun-Ji Kim;Chun-Sil Jin;Hyun-Ha Lee
    • Journal of Radiation Protection and Research
    • /
    • 제48권1호
    • /
    • pp.28-43
    • /
    • 2023
  • Background: High-fidelity meteorological data is a prerequisite for the realistic simulation of atmospheric dispersion of radioactive materials near nuclear power plants (NPPs). However, many meteorological models frequently overestimate near-surface wind speeds, failing to represent local meteorological conditions near NPPs. This study presents a new high-resolution (approximately 1 km) meteorological downscaling method for modeling short-range (< 100 km) atmospheric dispersion of accidental NPP plumes. Materials and Methods: Six considerations from literature reviews have been suggested for a new dynamic downscaling method. The dynamic downscaling method is developed based on the Weather Research and Forecasting (WRF) model version 3.6.1, applying high-resolution land-use and topography data. In addition, a new subgrid-scale topographic drag parameterization has been implemented for a realistic representation of the atmospheric surface-layer momentum transfer. Finally, a year-long simulation for the Kori and Wolsong NPPs, located in southeastern coastal areas, has been made for 2016 and evaluated against operational surface meteorological measurements and the NPPs' on-site weather stations. Results and Discussion: The new dynamic downscaling method can represent multiscale atmospheric motions from the synoptic to the boundary-layer scales and produce three-dimensional local meteorological fields near the NPPs with a 1.2 km grid resolution. Comparing the year-long simulation against the measurements showed a salient improvement in simulating near-surface wind fields by reducing the root mean square error of approximately 1 m/s. Furthermore, the improved wind field simulation led to a better agreement in the Eulerian estimate of the local atmospheric dispersion. The new subgrid-scale topographic drag parameterization was essential for improved performance, suggesting the importance of the subgrid-scale momentum interactions in the atmospheric surface layer. Conclusion: A new dynamic downscaling method has been developed to produce high-resolution local meteorological fields around the Kori and Wolsong NPPs, which can be used in short-range atmospheric dispersion modeling near the NPPs.

울산지역의 기상 특성: 기온과 바람을 중심으로 (Meteorological Characteristics in the Ulsan Metropolitan Region: Focus on Air Temperature and Winds)

  • 오인보;방진희;김양호
    • 한국대기환경학회지
    • /
    • 제31권2호
    • /
    • pp.181-194
    • /
    • 2015
  • Spatial-temporal meteorological features of the Ulsan metropolitan region (UMR) were analyzed using observations and high-resolution numerical modeling. Long-term trend analysis (1970~2013) showed a significant increase of $0.033^{\circ}Cyr^{-1}$ in the 5-year moving average temperature, although detailed short-term features varied, whereas wind speed and relative humidity over the same period displayed clear decreases of $-0.007ms^{-1}$ and $-0.29%yr^{-1}$, respectively. These trends indicate the effects of regional climate change and urbanization in the UMR. Seasonal variations averaged for the most recent three years, 2011~2013, showed that temperatures in three different regions (urban/industrial, suburban, coastal areas) of the UMR had similar seasonality, but significant differences among them were observed for a certain season. Urban and industrial complex regions were characterized by relatively higher temperatures with large differences (max.: $3.6^{\circ}C$) from that in the coastal area in summer. For wind speed, strong values in the range from 3.3 to $3.9ms^{-1}$ occurred in the coastal areas, with large differences clearly shown between the three regions in September and October. Diurnal variations of temperature were characterized by pronounced differences during the daytime (in summer) or nighttime (in winter) between the three regions. Results from the WRF modeling performed for four months of 2012 showed large variations in gridaverage temperature and winds in the UMR, which displayed significant changes by season. Especially, a clear temperature rise in the urban center was identified in July ($0.6^{\circ}C$ higher than nearby urban areas), and overall, relatively weak winds were simulated over urban and inland suburban regions in all seasons.

기상수치모의 자료를 이용한 부산지역의 소형풍력발전 시스템 적용에 관한 연구 (A Study on the Applcation of Small Wind Power System using Meteorological Simulation Data in Pusan)

  • 이귀옥;이강열;강동배;박창현;정우식
    • 한국환경과학회지
    • /
    • 제23권6호
    • /
    • pp.1085-1093
    • /
    • 2014
  • We investigate the amount of potential electricity energy generated by wind power in Busan metropolitan area, using the mesoscale meteorological model WRF (Weather Research & Forecasting), combined with small wind power generators. The WRF modeling has successfully simulated meteorological characteristics over the urban areas, and showed statistical significant to predict the amount of wind energy generation. The highest amount of wind power energy has been predicted at the coastal area, followed by at riverbank and upland, depending on predicted spatial distributions of wind speed. The electricity energy prediction method in this study is expected to be used for plans of wind farm constructions or the power supplies.

WRF-Hydro와 DART를 이용한 분포형 수문모형의 자료동화 (Ensemble data assimilation using WRF-Hydro and DART)

  • 노성진;최현진;김보미;이가림;이송희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.392-392
    • /
    • 2021
  • 자료동화(data assimilation) 기법은 관측 자료와 예측 모형의 정보를 동시에 활용, 모형의 상태량(state variables)이나 매개변수(model parameters)를 실시간으로 업데이트하는 Bayesian 필터링 이론에 근거한 방법으로, 최근 이를 활용한 수문 모의 정확도 향상 기술이 빠르게 발전하고 있다. 본 연구에서는 앙상블 자료동화의 정확성을 향상시키기 위한 세부 방법인 along-the-stream localization과 inflation 기법의 분포형 수문 모형에 대한 적용성을 대규모 지역 단위(regional-scale) 모의를 통해 검토한다. 분포형 수문모형과 자료동화 framework로는 WRF-Hydro(Weather Research and Forecasting Model Hydrological Modeling System)와 DART(Data Assimilation Research Testbed)를 각각 적용한다. WRF-Hydro는 미국의 전 대륙지역(CONUS; continental United States)에 대한 수문 모델링 framework인 National Water Model의 핵심엔진이고, DART는 미국 National Center for Atmospheric Research(NCAR) 연구소에서 개발한 범용 자료동화 도구이다. 본 연구에서는 지표수 수문모형의 자료동화를 위해 개발된 기법인 along-the-stream localization과 inflation 기법이 하도 추적에 미치는 영향을 분석한다. along-the stream localization 기법은 공간적 근접도 외에 하도의 수문학적 연관관계를 고려하는 localization 기법으로, 상대적으로 수문학적 상관도가 떨어지는 하도에 대한 과도한 자료동화를 줄여줄 수 있다. inflation 기법은 앙상블의 다양성을 증가시키는 기법으로, 칼만 필터(Kalman filter)에 의한 업데이트의 이전이나 이후 적용하여 앙상블 예측의 정확도를 추가적으로 향상시킬 수 있다. 본 고에서는 앙상블 자료동화 기법을 지표수 수문 모의에 적용할 경우 남아 있는 난제와 적용 가능한 방법에 대해 중점적으로 논의한다.

  • PDF

Seasonal Variations in Mercury Deposition over the Yellow Sea, July 2007 through April 2008

  • Ghim, Young Sung;Oh, Hyun Sun;Kim, Jin Young;Woo, Jung-Hun;Chang, Young-Soo
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권3호
    • /
    • pp.146-155
    • /
    • 2016
  • Spatial and temporal variations of mercury, including dry and wet deposition fluxes, were assessed over Northeast Asia, targeting the Yellow Sea, using meteorology and chemistry models. Four modeling periods, each representative of one of the four seasons, were selected. Modeling results captured general patterns and behaviors, and fell within similar ranges with respect to observations. However, temporal variations of mercury were not closely matched, possibly owing to the effects of localized emissions. Modeling results indicated that dry deposition is correlated with wind speed, while wet deposition is correlated with precipitation amount. Overall, the wet deposition flux of $66ng/m^2-day$ was about twice as large as the dry deposition flux of $32ng/m^2-day$, when averaged over the four modeling periods. Dry deposition occurred predominantly in the form of reactive gaseous mercury (RGM). In contrast, RGM accounted for only about two-thirds of wet deposition, while particulate mercury accounted for the remainder.

Nonlinear Kalman filter bias correction for wind ramp event forecasts at wind turbine height

  • Xu, Jing-Jing;Xiao, Zi-Niu;Lin, Zhao-Hui
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.393-403
    • /
    • 2020
  • One of the growing concerns of the wind energy production is wind ramp events. To improve the wind ramp event forecasts, the nonlinear Kalman filter bias correction method was applied to 24-h wind speed forecasts issued from the WRF model at 70-m height in Zhangbei wind farm, Hebei Province, China for a two-year period. The Kalman filter shows the remarkable ability of improving forecast skill for real-time wind speed forecasts by decreasing RMSE by 32% from 3.26 m s-1 to 2.21 m s-1, reducing BIAS almost to zero, and improving correlation from 0.58 to 0.82. The bias correction improves the forecast skill especially in wind speed intervals sensitive to wind power prediction. The fact shows that the Kalman filter is especially suitable for wind power prediction. Moreover, the bias correction method performs well under abrupt weather transition. As to the overall performance for improving the forecast skill of ramp events, the Kalman filter shows noticeable improvements based on POD and TSS. The bias correction increases the POD score of up-ramps from 0.27 to 0.39 and from 0.26 to 0.38 for down-ramps. After bias correction, the TSS score is significantly promoted from 0.12 to 0.26 for up-ramps and from 0.13 to 0.25 for down-ramps.

2010년 3월 극심한 황사사례의 발생 및 수송과정에 관한 연구 (A Study on the Outbreak and Transport Processes of the Severe Asian Dust Event Observed in March 2010)

  • 김석우;송상근;한승범
    • 한국대기환경학회지
    • /
    • 제32권3호
    • /
    • pp.256-271
    • /
    • 2016
  • The source and transport of the severe Asian dust event (ADE) recently observed in the Korean peninsula were analyzed based on observations (surface weather charts and satellite data) and modeling study (WRF-CMAQ modeling systems). The ADE occurred on 20-21 March 2010 in South Korea with very high $PM_{10}$ concentrations (up to approximately $3,000{\mu}g/m^3$ in Daegu and Jeju). The dominant meteorological conditions affecting the dust outbreak and transport processes were found to be associated with the two synoptic features: (1) strong airflows (i.e., westerlies) induced by a strong pressure gradient resulting from a dense isobar pattern (west-high and east-low) between Tuva Republic and Mongolia and (2) a rapid movement of the strong westerlies merged with airflows generated near Gobi Desert and Inner Mongolia. The merged strong westerlies with a low pressure played a pivotal role in the huge amount of AD and its transport height of 5-8 km. The time and location of dust emissions calculated in the source regions were similar to those observed in the weather charts and satellite image. The ADE simulation mostly showed agreement in the patterns and the concentration levels of modeled dust (including $PM_{10}$) with those of the observations.