DOI QR코드

DOI QR Code

Effect of Model Domain on Summer Precipitation Predictions over the Korean Peninsula in WRF Model

WRF 모형에서 한반도 여름철 강수 예측에 모의영역이 미치는 영향

  • Kim, Hyeong-Gyu (Department of Atmospheric Science, Kongju National University) ;
  • Lee, Hye-Young (Department of Atmospheric Science, Kongju National University) ;
  • Kim, Joowan (Department of Atmospheric Science, Kongju National University) ;
  • Lee, Seungwoo (Numerical Data Application Division, Numerical Modeling Center, Korea Meteorological Administration) ;
  • Boo, Kyung On (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Lee, Song-Ee (Department of Atmospheric Science, Kongju National University)
  • 김형규 (공주대학교 대기과학과) ;
  • 이혜영 (공주대학교 대기과학과) ;
  • 김주완 (공주대학교 대기과학과) ;
  • 이승우 (기상청 수치모델링센터 수치자료응용과) ;
  • 부경온 (국립기상과학원 현업운영개발부) ;
  • 이송이 (공주대학교 대기과학과)
  • Received : 2020.10.21
  • Accepted : 2021.01.07
  • Published : 2021.03.31

Abstract

We investigated the impact of domain size on the simulated summer precipitation over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two different domains are integrated up to 72-hours from 29 June 2017 to 28 July 2017 when the Changma front is active. The domain sizes are adopted from previous RDAPS (Regional Data Assimilation and Prediction System) and current LDAPS (Local Data Assimilation and Prediction System) operated by the Korea Meteorological Administration, while other model configurations are fixed identically. We found that the larger domain size showed better prediction skills, especially in precipitation forecast performance. This performance improvement is particularly noticeable over the central region of the Korean Peninsula. Comparisons of physical aspects of each variable revealed that the inflow of moisture flux from the East China Sea was well reproduced in the experiment with a large model domain due to a more realistic North Pacific high compared to the small domain experiment. These results suggest that the North Pacific anticyclone could be an important factor for the precipitation forecast during the summer-time over the Korean Peninsula.

Keywords

References

  1. Aligo, E. A., W. A. Gallus Jr., and M. Segal, 2009: On the impact of WRF model vertical grid resolution on Midwest summer rainfall forecasts. Wea. Forecasting, 24, 575-594. https://doi.org/10.1175/2008WAF2007101.1
  2. An, S.-I., K.-J. Ha, K.-H. Seo, S.-W. Yeh, S.-K. Min, and C.-H. Ho, 2011: A review of recent climate trends and causes over the Korean Peninsula. J. Climate Change Res., 2, 237-251 (in Korean with English abstract).
  3. Choi, H.-J., and S.-Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Res. Atmos., 120, 12445-12457, doi:10.1002/2015JD024230.
  4. Chu, Q., Z. Xu, Y. Chen, and D. Han, 2018: Evaluation of the ability of the Weather Research and Forecasting model to reproduce a sub-daily extreme rainfall event in Beijing, China using different domain configurations and spin-up times. Hydrol. Earth Syst. Sci., 22, 3391-3407, doi:10.5194/hess-22-3391-2018.
  5. Dash, S. K., K. C. Pattnayak, S. K. Panda, D. Vaddi, and A. Mamgain, 2015: Impact of domain size on the simulation of Indian summer monsoon in RegCM4 using mixed convection scheme and driven by HadGEM2. Climate Dyn., 44, 961-975, doi:10.1007/s00382-014-2420-1.
  6. Fasullo, J., and P. J. Webster, 2003: A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16, 3200-3211. https://doi.org/10.1175/1520-0442(2003)016<3200a:AHDOIM>2.0.CO;2
  7. Gebhardt, C., S. E. Theis, M. Paulat, and Z. B. Bouallegue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168-177, doi:10.1016/j.atmosres.2010.12.008.
  8. Goswami, P., and G. N. Mohapatra, 2014: A comparative evaluation of impact of domain size and parameterization scheme on simulation of tropical cyclones in the Bay of Bengal. J. Geophys. Res. Atmos., 119, 10-22, doi:10.1002/2013JD020592.
  9. Goswami, P., H. Shivappa, and S. Goud, 2012: Comparative analysis of the role of domain size, horizontal resolution and initial conditions in the simulation of tropical heavy rainfall events. Meteor. Appl., 19, 170-178, doi:10.1002/met.253.
  10. Han, J.-Y., S.-Y. Hong, K.-S. S. Lim, and J. Han, 2016: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Wea. Rev., 144, 2125-2135, doi:10.1175/MWR-D-15-0255.1.
  11. Hong, S.-Y., 2004: Comparison of heavy rainfall mechanisms in Korea and the central US. J. Meteorol. Soc. Jpn. Ser. II, 82, 1469-1479. https://doi.org/10.2151/jmsj.2004.1469
  12. Hong, S.-Y., and J.-W. Lee, 2009: Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos. Res., 93, 818-831. https://doi.org/10.1016/j.atmosres.2009.03.015
  13. Hong, S.-Y., and J. Jang, 2018: Impacts of shallow convection processes on a simulated boreal summer climatology in a global atmospheric model. Asia-Pac. J. Atmos. Sci., 54, 361-370, doi:10.1007/s13143-018-0013-3.
  14. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  15. Hong, S.-Y., J. Choi, E.-C. Chang, H. Park, and Y.-J. Kim, 2008: Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523-531. https://doi.org/10.1175/2007WAF2007030.1
  16. Hong, S.-Y., W. T. Kwon, I. U. Chung, H. J. Baek, Y. H. Byun, and D. H. Cha, 2011: A review of regional climate change in East-Asia and the Korean peninsula based on global and regional climate modeling researches. J. Climate Change Res., 2, 269-281 (in Korean with English abstract).
  17. Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting. Asia-Pac. J. Atmos., 54, 267-292, doi:10.1007/s13143-018-0028-9.
  18. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer mod els. J. Geophys. Res. Atmos., 113, D13103.
  19. Jeong, J.-H., D.-I. Lee, and C.-C. Wang, 2016: Impact of the cold pool on mesoscale convective system-produced extreme rainfall over southeastern South Korea: 7 July 2009. Mon. Wea. Rev., 144, 3985-4006, doi:10.1175/MWR-D-16-0131.1.
  20. Kamae, Y., W. Mei, and S.-P. Xie, 2019: Ocean warming pattern effects on future changes in East Asian atmospheric rivers. Environ. Res. Lett., 14, 054019, doi:10.1088/1748-9326/ab128a.
  21. Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875-1902. https://doi.org/10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2
  22. Kim, E.-H., K.-D. Ahn, H.-C. Lee, J.-C. Ha, and E. Lim, 2015: A study on the effect of ground-based GPS data assimilation into very-short-range prediction model. Atmosphere, 25, 623-637, doi:10.14191/Atmos.2015.25.4.623.
  23. Kwon, Y. C., and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev., 145, 583-598, doi:10.1175/MWR-D-16-0034.1.
  24. Lee, T.-Y., and Y.-H. Kim, 2007: Heavy precipitation systems over the Korean peninsula and their classification. J. Korean Meteor. Soc., 43, 367-396.
  25. Lee, J.-Y., W. Kim, and T.-Y. Lee, 2017: Physical and dynamic factors that drove the heavy rainfall event over the middle Korean Peninsula on 26-27 July 2011. Asia-Pac. J. Atmos. Sci., 53, 101-120, doi:10.1007/s13143-017-0009-4.
  26. Li, Y., G. Lu, Z. Wu, H. He, J. Shi, Y. Ma, and S. Weng, 2016: Evaluation of optimized WRF precipitation forecast over a complex topography region during flood season. Atmosphere, 7, 145, doi:10.3390/atmos7110145.
  27. Min, J.-S., J.-W. Roh, J.-B. Jee, and S. Kim, 2016: A study on sensitivity of heavy precipitation to domain size with a regional numerical weather prediction model. Atmosphere, 26, 85-95, doi:10.14191/Atmos.2016.26.1.085 (in Korean with English abstract).
  28. Peralta, C., Z. Ben Bouallegue, S. E. Theis, C. Gebhardt, and M. Buchhold, 2012: Accounting for initial condition uncertainties in COSMO‐DE‐EPS. J. Geophys. Res. Atmos., 117, D07108, doi:10.1029/2011JD016581.
  29. Shi, Y., Z. Jiang, Z. Liu, and L. Li, 2020: A Lagrangian analysis of water vapor sources and pathways for precipitation in East China in different stages of the East Asian summer monsoon. J. Climate, 33, 977-992, doi:10.1175/JCLI-D-19-0089.1.
  30. Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271, doi:10.1175/MWR-D-14-00116.1.
  31. Skamarock, W. C., and Coauthors, 2019: A Description of the Advanced Research WRF Model Version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp, doi:10.5065/1dfh-6p97.
  32. Sohn, B. J., G.-H. Ryu, H.-J. Song, and M.-L. Ou, 2013: Characteristic features of warm-type rain producing heavy rainfall over the Korean Peninsula inferred from TRMM measurements. Mon. Wea. Rev., 141, 3873-3888, doi:10.1175/MWR-D-13-00075.1.
  33. Song, H.-J., and B.-J. Sohn, 2015: Two heavy rainfall types over the Korean peninsula in the humid East Asian summer environment: A satellite observation study. Mon. Wea. Rev., 143, 363-382, doi:10.1175/MWR-D-14-00184.1.
  34. Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. Extended Abstract, 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, 14, 11-15 [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm].
  35. Wang, X., P. Steinle, A. Seed, and Y. Xiao, 2016: The sensitivity of heavy precipitation to horizontal resolution, domain size, and rain rate assimilation: case studies with a convection-permitting model. Adv. Meteorol., 2016, 7943845, doi:10.1155/2016/7943845.
  36. Yeo, S.-R., M. H. Kwon, and J.-Y. Lee, 2020: The non-linear relationship between the western North Pacific anticyclonic circulation and Korean summer precipitation on subseasonal timescales. Climate Dyn., 54, 525-541, doi:10.1007/s00382-019-05013-7.