• 제목/요약/키워드: atmospheric condition

검색결과 846건 처리시간 0.026초

Atmospheric Pressure Micro Plasma Sources

  • Brown, Ian
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.384-390
    • /
    • 2001
  • The hollow cathode discharge is a kind of plasma formation scheme in which plasma is formed inside a hollow structure, the cathode, with current to a nearby anode of arbitrary shape. In this scheme, electrons reflex radially within the hollow cathode, establishing an efficient ionization mechanism for gas within the cavity. An existence condition for the hollow cathode effect is that the electron mean-free-path for ionization is of the order of the cavity radius. Thus the size of this kind of plasma source must decrease as the gas pressure is increased. In fact, the hollow cathode effect can occur even at atmospheric pressure for cathode diameters of order 10-100 $\mu\textrm{m}$. That is, the "natural" operating pressure regime for a "micro hollow cathode discharge" is atmospheric pressure. This kind of plasma source has been the subject of increasing research activity in recent years. A number of geometric variants have been explored, and operational requirements and typical plasma parameters have been determined. Large arrays of individual tiny sources can be used to form large-area, atmospheric-pressure plasma sources. The simplicity of the method and the capability of operation without the need for the usual vacuum system and its associated limitations, provide a highly attractive option for new approaches to many different kinds of plasma applications, including plasma surface modification technologies. Here we review the background work that has been carried out in this new research field.

  • PDF

Correlation between Carbon Steel Corrosion and Atmospheric Factors in Taiwan

  • Lo, C.M.;Tsai, L.H.;Hu, C.W.;Lin, M.D.
    • Corrosion Science and Technology
    • /
    • 제17권2호
    • /
    • pp.37-44
    • /
    • 2018
  • Taiwan has a typical marine climate featuring perennial high-temperature and dampness. This climate, together with the emission of various industrial corrosive waste gases in recent years, contributes a lot to the corrosion of metal materials. In this study, samples of carbon steel exposed to various atmospheres in Taiwan were analyzed to investigate the impacts of atmospheric factors on carbon steel corrosion. Carbon steel samples were collected from 87 experimental stations between 2009 and 2012. Statistical analysis was employed to investigate the correlations between the carbon steel corrosion situations and the atmospheric factors such as concentrations of sulfur dioxide or chloride, exposure time, rainfall, etc. The results indicate that for samples from industrial areas, the sulfur dioxide concentration and exposure time during fall and winter are significantly correlated to the condition of the carbon steel corrosion. However, for samples from coastal zones, the significant correlated factors are chloride concentration and wetting time during winter. The results of this study are useful for the development of carbon steel corrosion prediction models.

전천 카메라 영상을 이용한 자동 운량 분석 (Development of Objective Algorithm for Cloudiness using All-Sky Digital Camera)

  • 김윤미;김준;조희구
    • 대기
    • /
    • 제18권1호
    • /
    • pp.1-14
    • /
    • 2008
  • The cloud amount, one of the basic parameter in atmospheric observation, have been observed by naked eyes of observers, which is affected by the subjective view. In order to ensure reliable and objective observation, a new algorithm to retrieve cloud amount was constructed using true color images composed of red, green and blue (RGB). The true color image is obtained by the Skyview, an all-sky imager taking pictures of sky, at the Science Building of Yonsei University, Seoul for a year in 2006. The principle of distinguishing clear sky from cloudy sky lies in the fact that the spectral characteristics of light scattering is different for air molecules and cloud. The result of Skyview's algorithm showed about 77% agreement between the observed cloud amount and the calculated, for the error range, the difference between calculated and observed cloudiness, within ${\pm}2$. Seasonally, the best accuracy of about 83% was obtained within ${\pm}2$ range in summer when the cloud amounts are higher, thus better signal-to-noise ratio. Furthermore, as the sky turbidity increased, the error also increased because of increased scattering which can explain the large error in spring. The algorithm still need to be improved in classifying sky condition more systematically with other complimentary instruments to discriminate thin cloud from haze to reduce errors in detecting clouds.

대기압 화염 플라즈마 처리가 강판의 표면 및 고무와의 접착특성에 미치는 영향 (Effect of Atmospheric Pressure Flame Plasma Treatment on Surface and Adhesive Bonding Properties between Steel Plate and Rubber)

  • 류상렬;이동주
    • Composites Research
    • /
    • 제23권5호
    • /
    • pp.1-7
    • /
    • 2010
  • NBR과 강판의 접착특성을 향상시키기 위해 대기압 화염 플라즈마(APFP) 처리 장치가 사용되었다. 가장 우수한 접착특성을 나타내는 최적 조건을 찾기 위해 다양한 처리 조건(처리속도, 거리)에 따른 효과에 대한 실험적 연구를 하였다. 주어진 조건에서 버너 포트와 강판의 최적 거리는 40mm, 버너 포트의 최적 처리속도는 50m/min였다. APFP 처리 후 접착제를 두 번 도포한 강판의 접착강도는 접착제만 도포한 경우보다 20.5% 증가하였다. 본 연구를 통해서 대기압 화염 플라즈마 처리에 의한 강판의 표면개질이 고무와 강의 접착강도를 증가시키는 적절하면서도 응용이 가능한 방법임을 확인하였다.

대기 안정 상태에 따른 풍력 단지 소음 전파 예측 (Prediction of Wind Farm Noise with Atmospheric Stability)

  • 손은국;이승훈;전민우;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • Noise generated from wind turbines has been predicted by numerical methods. Sound pressure level(SPL) on the turbines is predicted after aerodynamic analysis is carried out by Wind Turbine Flow, Aeroacoustics and Structure analysis (WINFAS) code. The level of each panel of acoustic sphere is determined by the sum of tonal, turbulence ingestion and airfoil self noise. With the noise source database, the acoustic sphere, SPL on the ground is calculated using the model based on acoustic ray theory. The model has been designed to consider the effects on the condition of terrain and atmosphere. The variations of SPL on the ground occur not only because of the different source level but also because of the nonuniform distributions of the sound speed along the height. Hence, the profile of an effective sound speed which is the sum of the contribution of sound speed to a temperature gradient and a wind speed variation is used by the theory based on atmospheric stability. With the integrated numerical method, the prediction of sound propagation on the wind farm is carried out with the states of the atmospheric stability.

  • PDF

Lagrangian 모형에 의한 분진 침강 효과에 따른 지표면 농도의 분포특성 분석 (Characteristic Analysis of the Surface Concentration Distribution under the Influence of Particle Settling by Lagrangian Model)

  • 박일수;강인구;최기덕
    • 환경영향평가
    • /
    • 제2권1호
    • /
    • pp.57-63
    • /
    • 1993
  • An analysis for particle settling effects via of plume centerline tilted exponentially under the influence of panicle settling velocity is carried out for particle of $30{\mu}m$ diameter with $1g/cm^3$ density and 0.02m/s settling velocity corresponding to its particle characteristic according to various wind speeds, atmospheric stabilities. Characteristic analysis of surface concentration distribution simulated by Lagrangian model also are carried out under the influence of plume centerline tilted exponentially at 10m stack height emitted 200 particles per second. This study reveals that plume centerline at the nearby source is sharply tilted exponentially under the condition of stable, weakly wind speed, therefore the lower concentration at the nearby source, the higher concentration at the downwind distance far away from source than actual one is brought out, if not apply the effect of plume centerline tilted exponentially to diffusion Model.

  • PDF

Application of Artificial Neural Networks to Predict Dynamic Responses of Wing Structures due to Atmospheric Turbulence

  • Nguyen, Anh Tuan;Han, Jae-Hung;Nguyen, Anh Tu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.474-484
    • /
    • 2017
  • This paper studies the applicability of an efficient numerical model based on artificial neural networks (ANNs) to predict the dynamic responses of the wing structure of an airplane due to atmospheric turbulence in the time domain. The turbulence velocity is given in the form of a stationary Gaussian random process with the von Karman power spectral density. The wing structure is modeled by a classical beam considering bending and torsional deformations. An unsteady vortex-lattice method is applied to estimate the aerodynamic pressure distribution on the wing surface. Initially, the trim condition is obtained, then structural dynamic responses are computed. The numerical solution of the wing structure's responses to a random turbulence profile is used as a training data for the ANN. The current ANN is a three-layer network with the output fed back to the input layer through delays. The results from this study have validated the proposed low-cost ANN model for the predictions of dynamic responses of wing structures due to atmospheric turbulence. The accuracy of the predicted results by the ANN was discussed. The paper indicated that predictions for the bending moments are more accurate than those for the torsional moments of the wing structure.

The property of inorganic insulation material depending on CSA contents and atmospheric steam curing condition

  • Kim, Tae-Yeon;Chu, Yong-Sik;Seo, Sung-Kwan;Yoon, Seog-Young
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.407-412
    • /
    • 2018
  • In this study, we have made a cement based inorganic insulation material and added CSA (Hauyne Clinker) to reduce the demolding time and enhance the handling workability. CSA contents were varied by 0%, 1%, 3%, 5% and the atmospheric steam curing was tried for enhancing the compressive strength. As the CSA contents are increased to 5%, a rapid reaction of hydration caused the sinking of the slurry. So, the setting-retarder was added to control the reaction of hydration. By this, the sinking of the slurry was controlled but the height of the green body after expansions was a little bit lowered. In the CSA-added slurry, it was possible to demold within 24 hours and in case of CSA 5%-added, the sufficient workability was secured. Atmospheric steam curing (temperatures $-40{\sim}80^{\circ}C$, for 6~10 hrs.) was attempted to improve the compressive strength and found that an excellent strength of 0.25 MPa was achieved at $80^{\circ}C$ for 8 hrs. Specific gravity was about $0.12{\sim}0.13g/cm^3$ and heat conductivity was about 0.045 W/mK in all specimens. This strategy significantly improves the compressive strength of CSA 5%-added specimen up to 25% compared to without CSA added specimen.

Fin and Temperature Effect of Frost in Ambient Air Vaporizer

  • Lee, Seong-Woo;Choi, Sung-Woong
    • 한국해양공학회지
    • /
    • 제36권4호
    • /
    • pp.211-216
    • /
    • 2022
  • Since liquefied natural gas (LNG) is imported in a liquid state of about -162℃ to increase transportation efficiency in Korea, it must be vaporized in a gaseous state to supply it to consumers. Among them, ambient air vaporizer (AAV) has caught attention due to eco-friendly and low costs characteristics. However, there is a disadvantage that the performance of the heat exchanger is deteriorated due to frost due to mist and icing when used for a long time. In this paper, frost generation model in AAV vaporizer was investigated with numerically to examine utilizing the vaporizer performance with the frost generation behavior. The frost generation behavior of AAV vaporizers was examined with humidity, fin characteristic, and temperature effects. As for the LNG discharge temperature, the 12 fin vaporizer showed the highest discharge temperature when the atmospheric temperature was 25℃, and the 8 fin vaporizer had the lowest LNG discharge temperature when the atmospheric temperature was 0℃. In the case of frost formation, in the case of the 12 fin vaporizer, it was formed the most at the atmospheric temperature of 25℃, and the least was formed in the vaporizer at the 0℃ condition of the atmospheric temperature of 8 fins.

ENVIROMENTAL CONDITION DURING AIR SHIPMENT OF HORTICULTURAL PRODUCTS FROM OKINAWA TO TOKYO

  • Akinaga, Takayoshi;Kohda, Yoshihiro
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.413-422
    • /
    • 1993
  • Air shipment affords the quickest possible delivery of horticultural products. The price of air shipped horticultural products are relatively high as most of these products are perishable. Usually the temperature in the cargo compartment is not controlled during flight. Thus, special attention should be paid to procooling prior to shipment. The environmental condition during transportation of horticultural products is an essential parameter for maintaining the quality of perishable products. Commonly horticultural products were loaded by ULD(Unit Load Devices) as a container or pallet in the aircraft (except for small aircraft) . Therefore, inside temperature of the container and cargo compartment came into question. Scarce literature on the relationship between environmental condition and quality changes of horticultural products during air shipment can be found. By the stand point of keeping fresh quality, investigations on the actual condition of air shipments were carried out to improve the technique during the distribution process of fresh horticultural products. Temperature, humidity, atmospheric pressure, carbon dioxide, ethylene, impacts, and changes in quality during the air shipment of snapbeans, okras and chrysanthemums were measured. Temperature was measured by recording thermometers, relative humidity by recording hygrometers, atmospheric pressure by a strain -guage type pressure sensor, carbon dioxide by testing tubes, ethylene by sampling bags and a gaschromatograph, impacts and vibrations by impact recorders and a 3D accelerometer. Relationships between environmental conditions and quality changes during air shipments were clarified. It was expected from investigations into actual shipments that the ventilation and insulation properties of air freight containers were related to the quality of agricultural products. Aircraft can no directly load and unload trucks into them. The transshipment is inclined to cause shocks and vibrations, and to invite damages within a short time.

  • PDF