• Title/Summary/Keyword: asymptotic value

Search Result 204, Processing Time 0.025 seconds

Age Structure Analysis of Kaloula borealis (맹꽁이(Kaloula borealis)의 나이구조 분석)

  • Ko, Sang-Beom;Lee, Jung-Hyun;Oh, Hong-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.6
    • /
    • pp.861-866
    • /
    • 2011
  • Using skeletochronology in the Daejung-eup, Jeju, we determined the age structure of Kaloula borealis. The study was performed during the breed season in June 2009. We measured the snout-vent length(SVL) and body weigth(BW) and analyzed the age structure of 38 male and 58 female frogs. The mean value of SVL is $43.69{\pm}3.44mm$ in males and $46.32{\pm}4.23mm$ in females. The age at first reproduction was estimated to be 2 years of age in males and 3 years in females. The oldest males and females were 8 and 10 years of age, respectively. Therefore, the longevity in this species was estimated to be more than 8 years for males and 10 years for females. So, females live longer than males. Also, this difference between the male and the female in age structure was significant. We estimated the growth curve for Kaloula borealis using von Bertalanffy growth model. The growth coefficient (K) was 0.56 in male and 0.41 in female. The asymptotic size was 46.41 mm in male and 50.22 mm in female.

Relationship between Maximum Stem Volume and Density during a Course of Self-thinning in a Cryptomeria japonica Plantation

  • Ogawa, Kazuharu;Hagihara, Akio
    • The Korean Journal of Ecology
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2004
  • Cryptomeria japonica plantation was monitored every year during 15 years from 1983 to 1997 for stem diameter and volume. The reciprocal equation, 1/Y = A + B/N, was applied to the relationship between cumulative volume Y and cumulative number N from the largest tree in the stand each year. The parameters A and B, which means respectively the reciprocal of an asymptotic value of total stand stem volume and the reciprocal of the maximum stem volume, are related by a power function. The power functional relationship between A and B derived a linear relationship of B-points ( $N_{B}$, $V_{B}$; $N_{B}$ = B/A, $Y_{B}$ = 1/2A) of each Y-N curve on log-log coordinates. The gradient of B-point line was so steep that the Y-N curve moved parallel upward year by year. The time trajectory of mean stem volume (W) and density ($\rho$) provided evidence in favor of the 3/2 power law of self-thinning, because the gradient of W - $\rho$ trajectory on log-log coordinates approximated to -3/2 at the final stage of stand development. On the basis of the results of Y-N curves and W - $\rho$ trajectory, the time trajectory of maximum stem volume $W_{max obs}$ and $\rho$ was derived theoretically. The gradient of $W_{max obs}$ - $\rho$ trajectory on log-log coordinates is calculated to be -0.6105 at the final stage. The gradient of $W_{max obs}$ - $\rho$ trajectory was steeper than that of W - $\rho$ trajectory at the early stage, while the former is gentler than the latter at the later stage.stage.e.age.e.

Spikelet Number Estimation Model Using Nitrogen Nutrition Status and Biomass at Panicle Initiation and Heading Stage of Rice

  • Cui, Ri-Xian;Lee, Lee-Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.390-394
    • /
    • 2002
  • Spikelet number per unit area(SPN) is a major determinant of rice yield. Nitrogen nutrition status and biomass during reproductive stage determine the SPN. To formulate a model for estimating SPN, the 93 field experiment data collected from widely different regions with different japonica varieties in Korea and Japan were analyzed for the upper boundary lines of SPN responses to nitrogen nutrition index(NNI), shoot dry weight and shoot nitrogen content at panicle initiation and heading stage. The boundary lines of SPN showed asymptotic responses to all the above parameters(X) and were well fitted to the exponential function of $f(X)=alphacdot{1-etacdotexp(gamma;cdot;X)}$. Excluding the constant, from the boundary line equation, the values of the equation range from 0 to 1 and represent the indices of parameters expressing the degree of influence on SPN. In addition to those indices, the index of shoot dry weight increase during reproductive stage was calculated by directly dividing the shoot dry weight increase by the maximum value ($800 extrm{g/m}^{-2}$) of dry weight increase as it showed linear relationship with SPN. Four indices selected by forward stepwise regression at the stay level of 0.05 were those for NNI ($I_{NNI}_P$) at panicle initiation, NNI($I_{NNI}_h$) and shoot dry weight($I_{DW}_h$) at heading stage, and dry weight increase($I_{DW}$) between those two stages. The following model was obtained: SPN=48683ㆍ $I_{DWH}$$^{0.482}$$I_{NNIp}$$^{0.387}$$I_{NNIH}$$^{0.318}$$I_{DW}$ $^{0.35}$). This model accounted for about 89% of the variation of spikelet number. In conclusion this model could be used for estimating the spikelet number of japonica rice with some confidence in widely different regions and thus, integrated into a rice growth model as a component model for spikelet number estimation.n.n.

Recent results on the analysis of viscoelastic constitutive equations

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.33-45
    • /
    • 2002
  • Recent results obtained for the port-pom model and the constitutive equations with time-strain separability are examined. The time-strain separability in viscoelastic systems Is not a rule derived from fundamental principles but merely a hypothesis based on experimental phenomena, stress relaxation at long times. The violation of separability in the short-time response just after a step strain is also well understood (Archer, 1999). In constitutive modeling, time-strain separability has been extensively employed because of its theoretical simplicity and practical convenience. Here we present a simple analysis that verifies this hypothesis inevitably incurs mathematical inconsistency in the viewpoint of stability. Employing an asymptotic analysis, we show that both differential and integral constitutive equations based on time-strain separability are either Hadamard-type unstable or dissipative unstable. The conclusion drawn in this study is shown to be applicable to the Doi-Edwards model (with independent alignment approximation). Hence, the Hadamardtype instability of the Doi-Edwards model results from the time-strain separability in its formulation, and its remedy may lie in the transition mechanism from Rouse to reptational relaxation supposed by Doi and Edwards. Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the port-pom equations have been derived in the integral/differential form and also in the simplifled differential type by McLeish and carson on the basis of the reptation dynamics with simplifled branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for these constitutive equations. It is proved that the differential model is globally Hadamard stable, and the integral model seems stable, as long as the orientation tensor remains positive definite or the smooth strain history in the flow is previously given. However cautious attention has to be paid when one employs the simplified version of the constitutive equations without arm withdrawal, since neglecting the arm withdrawal immediately yields Hadamard instability. In the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady flow curves, the constitutive equations exhibit severe instability that the solution possesses strong discontinuity at the moment of change of chain dynamics mechanisms.

Assessing Infinite Failure Software Reliability Model Using SPC (Statistical Process Control) (통계적 공정관리(SPC)를 이용한 무한고장 소프트웨어 신뢰성 모형에 대한 접근방법 연구)

  • Kim, Hee Cheul;Shin, Hyun Cheul
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on infinite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision about when to market software, the conditional failure rate is an important variables. The finite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outliers, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical Process Control (SPC) can monitor the forecasting of software failure and there by contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, we proposed a control mechanism based on NHPP using mean value function of log Poission, log-linear and Parto distribution.

Wall Superheat Effect on Single Bubble Growth During Nucleate Boiling at Saturated Pool (풀 핵비등시 단일 기포 성장에 대한 벽면 과열도의 영향에 관한 연구)

  • Kim Jeong bae;Lee Han Choon;Kim Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.633-642
    • /
    • 2005
  • Nucleate pool boiling experiments for R11 under a constant wall temperature condition were carried out. A microscale heater array was used for the heating and the measurement of high temporal and spatial resolution by the Wheatstone bridge circuit. Very sensitive heat flow rate data were obtained by the control for the surface condition with high time resolution. The measured heat flow rate shows a discernable peak at the initial growth stage and reaches an almost constant value. In the thermal growth region, bubble shows a growth proportional to $t^{\frac{1}{5}}$. The bubble growth behavior is analyzed with a dimensionless parameter to compare with the previous results in the same scale. As the wall superheat increases, the departure diameter and the departure time increase, and the waiting time decreases. But the asymptotic growth rate is not affected by the wall superheat change. The effect of the wall superheat is resolved into the suggested growth equation. Dimensionless parameters of time and bubble radius characterize the thermal growth behavior well, irrespective of wall condition. The comparison between the result of this study and the previous results shows a good agreement at the thermal growth region. The quantitative analysis for the heat transfer mechanism is conducted with the measured heat flow rate behavior and the bubble growth behavior. The required heat flow rate for the volume change of the observed bubble is about twice as much as the instantaneous heat flow rate supplied from the wall.

Non-fragile robust guaranteed cost control for descriptor systems with parameter uncertainties (변수 불확실성 특이시스템의 비약성 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.59-66
    • /
    • 2007
  • In this paper, we consider the non-fragile robust guaranteed cost state feedback controllers design method for descriptor systems with parameter uncertainties and static state feedback controller with multiplicative uncertainty. The sufficient condition of controller existence, the design method of non-fragile robust guaranteed cost controller, the measure of non-fragility in controller, the upper bound of guaranteed cost performance measure to minimize the guaranteed cost are presented via LMI(linear matrix inequality) technique. Also, the sufficient condition can be rewritten as LMI form in terms of transformed variables through singular value decomposition, some changes of variables, and Schur complements. Therefore, the obtained non-fragile robust guaranteed cost controller satisfies the asymptotic stability and minimizes the guaranteed cost for the closed loop descriptor systems with parameter uncertainties and controller fragility. Finally, a numerical example is given to illustrate the design method.

On the Improvement of the Accuracy of Higher Order Derivatives in the MLS(Moving Least Square) Difference Method via Mixed Formulation (MLS 차분법의 결정 변수에 따른 정확도 분석 및 혼합변분이론을 통한 미분근사 성능향상)

  • Kim, Hyun-Young;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.279-286
    • /
    • 2020
  • In this study, we investigate the accuracy of higher order derivatives in the moving least square (MLS) difference method. An interpolation function is constructed by employing a Taylor series expansion via MLS approximation. The function is then applied to the mixed variational theorem in which the displacement and stress resultants are treated as independent variables. The higher order derivatives are evaluated by solving simply supported beams and cantilevers. The results are compared with the analytical solutions in terms of the order of polynomials, support size of the weighting function, and number of nodes. The accuracy of the higher order derivatives improves with the employment of the mean value theorem, especially for very high-order derivatives (e.g., above fourth-order derivatives), which are important in a classical asymptotic analysis.

Development of non-fragile $H_{\infty}$ controller design algorithm for singular systems (특이시스템의 비약성 $H_{\infty}$ 제어기 설계 알고리듬 개발)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.9-14
    • /
    • 2005
  • In this paper, we consider the synthesis of non-fragile $H_{\infty}$ state feedback controllers for singular systems and static state feedback controller with multiplicative uncertainty. The sufficient condition of controller existence, the design method of non-fragile $H_{\infty}$ controller, and the measure of non-fragility in controller are presented via LMI(linear matrix inequality) technique. Also, the sufficient condition can be rewritten as LMI form in terms of transformed variables through singular value decomposition, some changes of variables, and Schur complements. Therefore, the obtained non-fragile $H_{\infty}$ controller guarantees the asymptotic stability and disturbance attenuation of the closed loop singular systems within a prescribed degree. Moreover, the controller design method can be extended to the problem of robust and non-fragile $H_{\infty}$ controller design method for singular systems with parameter uncertainties. Finally, a numerical example is given to illustrate the design method.

A Study on the Flow Characteristics of Newtonian Fluid and Non-Newtonian Fluid in Dividing Tubes (분기관내 뉴턴 유체 및 비뉴턴 유체의 유동특성에 관한 연구)

  • Ha, O.N.;Chun, U.H.;Kim, G.;Lee, B.K.;Lee, H.S.;Yun, C.H.;Lee, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.113-131
    • /
    • 1998
  • The objective of the present study is to investigate the characteristics of the dividing flow in the laminar flow region. Using glycerine water solution(wt43%) for Newtonian fluid and the polymer of viscoelastic fluid(500wppm) for non-Newtonian fluid, this research investigates the flow state of the dividing tube in steady laminar flow region of the two dimensional dividing tube by measuring the effect of Reynolds number, dividing angle, and the flow rate ratio on the loss coefficient. In T- and Y-type tubes, the loss coefficients of the Newtonian fluid decreases in constant rate when the Reynolds number is below 100. The effect of the flow rate ratio on the loss coefficients is negligible. But when the Reynolds number is over 100, the loss coefficient with various flow rate ratios approach an asymptotic value. The loss coefficient of the non-Newtonian fluid for different the Reynolds number shows the similar tendency of the Newtonian fluid. And when the Reynolds number is over 300, the loss coefficient is approximately 1.03 regardless of flow rate ratio or the dividing angle. The aspect ratio does hardly influence the reattachment length and the loss coefficient of both Newtonian and non Newtonian fluid. The loss coefficient decreases as the Reynolds number increases. The loss coefficient of Newtonian fluid is larger than that of non-Newtonian fluid.

  • PDF