• Title/Summary/Keyword: asymptotic expan

Search Result 2, Processing Time 0.014 seconds

ASYMPTOTIC EVALUATION OF ${{\int}_{0}^{\infty}}(\frac{sin\;x}{x})^n\;dx$

  • Schlage-Puchta, Jan-Christoph
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1193-1202
    • /
    • 2020
  • We consider the integral ${{\int}_{0}^{\infty}}(\frac{sin\;x}{x})^n\;dx$ as a function of the positive integer n. We show that there exists an asymptotic series in ${\frac{1}{n}}$ and compute the first terms of this series together with an explicit error bound.

Performance Evaluation of Seawater-Exchanging Breakwater Using Helmholtz Resonator (헤름홀츠 공명장치를 이용한 해수교환형 방파제의 성능평가)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.89-99
    • /
    • 2001
  • In the present paper, Helmholtz resonator, which is widely used as a sound-amplification device, is applied to the development of seawater-exchanging breakwater. The incident waves can induce a large response in the resonator when incident wave frequency is close to one of natural modes of the resonator. Largely amplified potential energy due to the resonance supplies clean seawater into the harbor side throughout the channel. Flow supplied by the resonator circulates the seawater of harbor and helps to improve water quality. Within the framework of linear potential theory, matched asymptotic expansion method is employed to analyze the wave responses in a resonator. The semi-circular shape of the resonator has been chosen as an analytic model for mathematical simplicity. The wave responses of both single and arrays of Helmholtz resonator are investi¬gated. To validate an analytic solution, model test is conducted at 2-dimensional wave tanle Wave hcights in the resonator and velocity at the channel are measured for the state of valve-on and valve-off.

  • PDF