• Title/Summary/Keyword: asymptotic behavior of solutions

Search Result 75, Processing Time 0.026 seconds

GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF PERIODIC SOLUTIONS TO A FRACTIONAL CHEMOTAXIS SYSTEM ON THE WEAKLY COMPETITIVE CASE

  • Lei, Yuzhu;Liu, Zuhan;Zhou, Ling
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1269-1297
    • /
    • 2020
  • In this paper, we consider a two-species parabolic-parabolic-elliptic chemotaxis system with weak competition and a fractional diffusion of order s ∈ (0, 2). It is proved that for s > 2p0, where p0 is a nonnegative constant depending on the system's parameters, there admits a global classical solution. Apart from this, under the circumstance of small chemotactic strengths, we arrive at the global asymptotic stability of the coexistence steady state.

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO STOCHASTIC 3D GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS WITH UNBOUNDED DELAYS

  • Cung The Anh;Vu Manh Toi;Phan Thi Tuyet
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.227-253
    • /
    • 2024
  • This paper studies the existence of weak solutions and the stability of stationary solutions to stochastic 3D globally modified Navier-Stokes equations with unbounded delays in the phase space BCL-∞(H). We first prove the existence and uniqueness of weak solutions by using the classical technique of Galerkin approximations. Then we study stability properties of stationary solutions by using several approach methods. In the case of proportional delays, some sufficient conditions ensuring the polynomial stability in both mean square and almost sure senses will be provided.

A NEW WAY TO FIND THE CONTROLLING FACTOR OF THE SOLUTION TO A DIFFERENCE EQUATION

  • Park, Seh-Ie
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.5
    • /
    • pp.833-846
    • /
    • 1999
  • In this paper, we will study the relationship between the controlling factor of the solution to a difference equation and the solution of the corresponding differential equation. Many times the controlling factors are the same. But even the controlling factor of the two solutions may be different, we will discover a way to compute, for first order non-linear equations, the controlling factor of the solution to the difference equation using the solution of the differential equation.

  • PDF

SOLVABILITY AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR SOME NONLINEAR INTEGRAL EQUATIONS RELATED TO CHANDRASEKHAR'S INTEGRAL EQUATION ON THE REAL HALF LINE

  • Mahmoud Bousselsal;Daewook Kim;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.57-79
    • /
    • 2023
  • We investigate the existence and uniform attractivity of solutions of a class of functional integral equations which contain a number of classical nonlinear integral equations as special cases. Using the technique of measures of noncompactness and a fixed point theorem of Darbo type we prove the existence of solutions of these equations in the Banach space of continuous and bounded functions on the nonnegative real half axis. Our results extend and improve some known results in the recent literature. An example illustrating the main result is presented in the last section.

THE DYNAMICS OF POSITIVE SOLUTIONS OF A HIGHER ORDER FRACTIONAL DIFFERENCE EQUATION WITH ARBITRARY POWERS

  • GUMUS, MEHMET;SOYKAN, YUKSEL
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.267-276
    • /
    • 2017
  • The purpose of this paper is to investigate the local asymptotic stability of equilibria, the periodic nature of solutions, the existence of unbounded solutions and the global behavior of solutions of the fractional difference equation $$x_{n+1}=\frac{^{{\alpha}x}n-1(k+1)}{{\beta}+{\gamma}x^p_{n-k}x^q_{n-(k+2)}}$$, $$n=0,1,{\dots}$$ where the parameters ${\alpha}$, ${\beta}$, ${\gamma}$, p, q are non-negative numbers and the initial values $x_{-(k+2)}$,$x_{-(k+1)}$, ${\dots}$, $x_{-1}$, $x_0{\in}\mathb{R}^+$.

UNIQUENESS OF TOPOLOGICAL SOLUTIONS FOR THE GUDNASON MODEL

  • Kim, Soojung;Lee, Youngae
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.873-894
    • /
    • 2021
  • In this paper, we consider the Gudnason model of 𝒩 = 2 supersymmetric field theory, where the gauge field dynamics is governed by two Chern-Simons terms. Recently, it was shown by Han et al. that for a prescribed configuration of vortex points, there exist at least two distinct solutions for the Gudnason model in a flat two-torus, where a sufficient condition was obtained for the existence. Furthermore, one of these solutions has the asymptotic behavior of topological type. In this paper, we prove that such doubly periodic topological solutions are uniquely determined by the location of their vortex points in a weak-coupling regime.

ON A THREE-DIMENSIONAL SYSTEM OF DIFFERENCE EQUATIONS WITH VARIABLE COEFFICIENTS

  • KARA, MERVE;YAZLIK, YASIN;TOUAFEK, NOURESSADAT;AKROUR, YOUSSOUF
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.381-403
    • /
    • 2021
  • Consider the three-dimensional system of difference equations $x_{n+1}=\frac{{\prod_{j=0}^{k}}z_n-3j}{{\prod_{j=1}^{k}}x_n-(3j-1)\;\(a_n+b_n{\prod_{j=0}^{k}}z_n-3j\)}$, $y_{n+1}=\frac{{\prod_{j=0}^{k}}x_n-3j}{{\prod_{j=1}^{k}}y_n-(3j-1)\;\(c_n+d_n{\prod_{j=0}^{k}}x_n-3j\)}$, $z_{n+1}=\frac{{\prod_{j=0}^{k}}y_n-3j}{{\prod_{j=1}^{k}}z_n-(3j-1)\;\(e_n+f_n{\prod_{j=0}^{k}}y_n-3j\)}$, n ∈ ℕ0, where k ∈ ℕ0, the sequences $(a_n)_{n{\in}{\mathbb{N}}_0$, $(b_n)_{n{\in}{\mathbb{N}}_0$, $(c_n)_{n{\in}{\mathbb{N}}_0$, $(d_n)_{n{\in}{\mathbb{N}}_0$, $(e_n)_{n{\in}{\mathbb{N}}_0$, $(f_n)_{n{\in}{\mathbb{N}}_0$ and the initial values x-3k, x-3k+1, …, x0, y-3k, y-3k+1, …, y0, z-3k, z-3k+1, …, z0 are real numbers. In this work, we give explicit formulas for the well defined solutions of the above system. Also, the forbidden set of solution of the system is found. For the constant case, a result on the existence of periodic solutions is provided and the asymptotic behavior of the solutions is investigated in detail.

SHADOWING PROPERTY FOR ADMM FLOWS

  • Yoon Mo Jung;Bomi Shin;Sangwoon Yun
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.395-408
    • /
    • 2024
  • There have been numerous studies on the characteristics of the solutions of ordinary differential equations for optimization methods, including gradient descent methods and alternating direction methods of multipliers. To investigate computer simulation of ODE solutions, we need to trace pseudo-orbits by real orbits and it is called shadowing property in dynamics. In this paper, we demonstrate that the flow induced by the alternating direction methods of multipliers (ADMM) for a C2 strongly convex objective function has the eventual shadowing property. For the converse, we partially answer that convexity with the eventual shadowing property guarantees a unique minimizer. In contrast, we show that the flow generated by a second-order ODE, which is related to the accelerated version of ADMM, does not have the eventual shadowing property.

An Experimental Study on the Dynamic Behavior of a Marine Riser (석유 시추보호관의 운동특성에 관한 실험적 고찰)

  • 김용철;이판묵;홍사영
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.46-58
    • /
    • 1988
  • The experimental investigations on the motion characteristics of a marine riser both in air and water were performed. The static deflections and natural frequencies of the riser in air including the effect of static offset, were obtained from the experiment. These results were compared with those of theoretical prediction by using a simple asymptotic formula. In order to investigate the nonlinear motion characteristics of the riser subject to nonlinear viscous drag and large displacement, the forced oscillation tests both in air and water were performed. In the forced oscillation tests in air, it was found that the transverse motion due to geometrical nonlinearity grows when the amplitude of in-line oscillation exceeds a certain critical value, say, order of 1-2 diameters. The planar motions of the riser in water due to vortex shedding and the geometrical nonlinearity were described. Some of these results were also compared with those of theoretical analysis, which uses a numerical perturbation technique based on the derived linear asymptotic solutions, and found to be generally in good agreement.

  • PDF

GLOBAL EXISTENCE AND STABILITY FOR EULER-BERNOULLI BEAM EQUATION WITH MEMORY CONDITION AT THE BOUNDARY

  • Park, Jong-Yeoul;Kim, Joung-Ae
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1137-1152
    • /
    • 2005
  • In this article we prove the existence of the solution to the mixed problem for Euler-Bernoulli beam equation with memory condition at the boundary and we study the asymptotic behavior of the corresponding solutions. We proved that the energy decay with the same rate of decay of the relaxation function, that is, the energy decays exponentially when the relaxation function decay exponentially and polynomially when the relaxation function decay polynomially.