• Title/Summary/Keyword: asymmetric changes

Search Result 176, Processing Time 0.025 seconds

A Generalized Model for the Prediction of Thermally-Induced CANDU Fuel Element Bowing (CANDU 핵연료봉의 열적 휨 모형 및 예측)

  • Suk, H.C.;Sim, K-S.;Park, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.811-824
    • /
    • 1995
  • The CANDU element bowing is attributed to actions of both the thermally induced bending moments and the bending moment due to hydraulic drag and mechanical loads, where the bowing is defined as the lateral deflection of an element from the axial centerline. This paper consider only the thermally-induced bending moments which are generated both within the sheath and the fuel and sheath by an asymmetric temperature distribution with respect to the axis of an element The generalized and explicit analytical formula for the thermally-induced bending is presented in con-sideration of 1) bending of an empty tube treated by neglecting the fuel/sheath mechanical interaction and 2) fuel/sheath interaction due to the pellet and sheath temperature variations, where in each case the temperature asymmetries in sheath are modelled to be caused by the combined effects of (i) non-uniform coolant temperature due to imperfect coolant mixing, (ii) variable sheath/coolant heat transfer coefficient, (iii) asymmetric heat generation due to neutron flux gradients across an element and so as to inclusively cover the uniform temperature distributions within the fuel and sheath with respect to the axial centerline. As the results of the sensitivity calculations of the element bowing with the variations of the parameters in the formula, it is found that the element bowing is greatly affected relatively with the variations or changes of element length, sheath inside diameter, average coolant temperature and its variation factor, pellet/sheath mechanical interaction factor, neutron flux depression factor, pellet thermal expansion coefficient, pellet/sheath heat transfer coefficient in comparison with those of other parameters such as sheath thickness, film heat transfer coefficient, sheath thermal expansion coefficient and sheath and pellet thermal conductivities.

  • PDF

Evaluation of the dose distribution in Mapcheck using Enhanced Dynamic Wedge (Enhanced Dynamic Wedge를 사용한 Mapcheck에서의 선량분포 평가)

  • Kang, Su-Man;Jang, Eun-Sun;Lee, Byung-Koo;Jung, Bong-Jae;Shin, Jung-Sub;Park, Cheol-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.343-349
    • /
    • 2012
  • Intensity Modulated Radiotherapy (IMRT) is increasing its use recently due to its benefits of minimizing the dose on surrounding normal organs and being able to target a high dose specifically to the tumor. The study aims to measure and evaluate the dose distribution according to its dynamic changes in Mapcheck. In order to verify the dose distribution by EDW angle($10^{\circ}$,$15^{\circ}$,$20^{\circ}$,$25^{\circ}$,$30^{\circ}$,$45^{\circ}$,$60^{\circ}$), field size (asymmetric field) and depth changes (1.5 cm, 5.0 cm) using IMRT in Clinac ix, a solid phantom was placed on the Mapcheck and 100MU was exposed by 6 MV, 10MV X-ray. Using a 6MV, 10MV energy, the percentage depth dose according to a dynamic changes at a maximum dose depth (1.5 cm) and at 5.0 cm depth showed the value difference of maximum 0.6%, less than 1%, which was calculated by a treatment program device considering the maximum dose depth at the center as 100%, the percentage depth dose was in the range between 2.4% and 7.2%. Also, the maximum value difference of a percentage depth dose was 4.1% in Y2-OUT direction, and 1.7% in Y1-IN direction. When treating a patient using a wedge, it is considered that using an enhanced dynamic wedge is effective to reduce the scattered dose which induces unnecessary dose to the surroundings. In particular, when treating a patient at clinic, a treatment must be performed considering that the wedge dose in a toe direction is higher than the dose in a heel direction.

A Study on the Comovements and Structural Changes of Global Business Cycles using MS-VAR models (MS-VAR 모형을 이용한 글로벌 경기변동의 동조화 및 구조적 변화에 대한 연구)

  • Lee, Kyung-Hee;Kim, Kyung-Soo
    • Management & Information Systems Review
    • /
    • v.35 no.3
    • /
    • pp.1-22
    • /
    • 2016
  • We analyzed the international comovements and structural changes in the quarterly real GDP by the Markov-switching vector autoregressive model (MS-VAR) from 1971(1) to 2016(1). The main results of this study were as follows. First, the business cycle phenomenon that occurs in the models or individual time series in real GDP has been grasped through the MS-VAR models. Unlike previous studies, this study showed the significant comovements, asymmetry and structural changes in the MS-VAR model using a real GDP across countries. Second, even if there was a partial difference, there were remarkable structural changes in the economy contraction regime(recession), such as 1988(2) ending the global oil shock crisis and 2007(3) starting the global financial crisis by the MS-VAR model. Third, large-scale structural changes were generated in the economic expansion and/or contraction regime simultaneously among countries. We found that the second world oil shocks that occurred after the first global oil shocks of 1973 and 1974 were the main reasons that caused the large-scale comovements of the international real GDP among countries. In addition, the spillover between Korea and 5 countries has been weak during the Asian currency crisis from 1997 to 1999, but there was strong transmission between Korea and 5 countries at the end of 2007 including the period of the global financial crisis. Fourth, it showed characteristics that simultaneous correlation appeared to be high due to the country-specific shocks generated for each country with the regime switching using real GDP since 1973. Thus, we confirmed that conclusions were consistent with a number of theoretical and empirical evidence available, and the macro-economic changes were mainly caused by the global shocks for the past 30 years. This study found that the global business cycles were due to large-scale asymmetric shocks in addition to the general changes, and then showed the main international comovements and/or structural changes through country-specific shocks.

  • PDF

Recent Spatial and Temporal Changes in Means and Extreme Events of Temperature and Precipitation across the Republic of Korea (최근 우리나라 기온 및 강수 평균과 극한 사상의 시.공간적 변화)

  • Choi, Gwang-Yong;Kwon, Won-Tae;Boo, Kyung-On;Cha, Yu-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.5
    • /
    • pp.681-700
    • /
    • 2008
  • In this study, the spatial and temporal patterns of changes in means and extreme events of temperature and precipitation across the Republic of Korea over the last 35 years (1973-2007) are examined. Over the study period, meteorological winter (December-February) mean minimum (maximum) temperature has increased by $+0.54^{\circ}C$/decade ($+0.6^{\circ}C$/decade), while there have been no significant changes in meteorological summer (June-August) mean temperatures. According to analyses of upper or lower $10^{th}$ percentile-based extreme temperature indices, the annual frequency of cool nights (days) has decreased by -9.2 days/decade (-3.3 days/decade), while the annual frequency of warm nights (days) has increased by +4.9 days/decade (+6.8 days/decade). In contrast, the increase rates of summer warm nights (+8.0 days/$^{\circ}C$) and days (+6.6 days/$^{\circ}C$) relative to changes in summer means minimum and maximum temperatures means are greater than the decreasing rates of winter nights (-5.2 days/$^{\circ}C$) and days (-4.3 days/$^{\circ}C$) relative to changes in winter temperatures. These results demonstrate that seasonal and diurnal asymmetric changes in extreme temperature events have occurred. Moreover, annual total precipitation has increased by 85.5 mm/decade particularly in July and August, which led to the shift of a bimodal behavior of summer precipitation into a multi-modal structure. These changes have resulted from the intensification of heavy rainfall events above 40mm in recent decades, and spatially the statistically-significant increases in these heavy rainfall events are observed around the Taebaek mountain region.

Asymmetric Effects of Inflation Uncertainty on Facilities Investment (인플레이션 불확실성의 기업 설비투자에 대한 비대칭적 효과 분석)

  • Son, Minkyu;Chang, Youngjae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.123-132
    • /
    • 2014
  • Inflation uncertainty is known to have deleterious effects on facilities investment by disturbing the corporate decision on the opportunity cost of investment. In this paper, we test the validity of this hypothesis in Korea by estimating the inflation uncertainty with both a time-varing parameter model with GARCH disturbances and the relative price volatility and then, estimate the facilities investment equation which includes those uncertainty indicators. The uncertainty indexes estimated by the above-mentioned methods continue to fluctuate even after the inflation rate has dropped dramatically reflecting the structural changes of Korea's economy since the financial crisis in 1997. As a result of estimation of the investment equation by both OLS and GMM, we find the inflation uncertainty has a negative effect on facilities investment with a statistical significance. Moreover, by means of Markov-switching regression model utilized to verify the non-linearity of this relationship, we draw a conclusion that this negative effect of inflation uncertainty heightens asymmetrically during the downturn periods of business cycle.

The Influence of Various Carrying a Pack Methods during Walking on Parameters of Foot Contact (가방 휴대 방법이 보행 시 발바닥 접촉 양상에 미치는 영향)

  • Park, Soo-Jin;Kwon, Yoo-Jung;Kim, Min-Hee;Kim, Jin-Sang
    • Journal of Korean Physical Therapy Science
    • /
    • v.18 no.2
    • /
    • pp.29-40
    • /
    • 2011
  • Purpose: The purpose of this study was to analyze the changes of parameters of foot contact by various carrying a pack methods during walking. Method: The subjects were consisted of normal forty four persons (males 30, females 14, mean age 23). The carrying a pack methods were classified into five conditions: carrying no bag(Con 1), carrying a backpack(Con 2), carrying a shoulder bag(Con 3), carrying a cross bag(Con 4), carrying a one-hand bag(Con 5). All subjects were participated in these five condition and measured foot pressure by F-scan system during walking. Then foot contact time, foot contact area, foot contact length and width were measured and analyzed. The repeated one-way analysis of variance (ANOVA) was used to get difference between conditions and independent t-test was used to get difference between left and right foot within condition. Result: In the comparison of parameters of foot, contact time, contact area and mid foot width were significantly different between conditions(p<.05), and in both foot contact time at condition 5 showed the most significant reduction(p<.05). In the comparison of parameters of foot between left and right foot within condition, every conditions were not significantly different(p>.05). Conclusion: In this study various carrying methods changed the parameters of foot contact and showed significant difference in some articles between carrying methods. However, asymmetric load of pack by carrying methods didn't affected symmetry of parameters of foot contact between left and right foot.

  • PDF

Information Externality, Bank Structure, and Economy (경제발전 및 정보의 외부성에 따른 최적 은행구조에 대한 고찰)

  • Doh, Bo-Eun
    • KDI Journal of Economic Policy
    • /
    • v.27 no.1
    • /
    • pp.39-79
    • /
    • 2005
  • This paper addresses the question of whether a monopolistic banking system can lead to a higher steady state level of capital stock. Information externality has enhanced as the advance of the financial system such as the establishment of the credit bureau system, networking, etc. Hence this paper aims to analyze the effects of both information externality and economic development on the determination of the optimal banking market structure. This paper shows that the presence of information externality together with asymmetric information would explain how a monopoly bank leads to a higher steady state level of capital stock. It also shows that not only under-developed countries but industrialized countries may also benefit from a concentrated banking system. This analysis provides an alternative explanation of the recent deregulation and resulting trends in mergers and acquisitions. This also provides a theoretical foundation to support governments' policy changes toward promoting merger and acquisition activities.

  • PDF

Joint analysis of binary and continuous data using skewed logit model in developmental toxicity studies (발달 독성학에서 비대칭 로짓 모형을 사용한 이진수 자료와 연속형 자료에 대한 결합분석)

  • Kim, Yeong-hwa;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.123-136
    • /
    • 2020
  • It is common to encounter correlated multiple outcomes measured on the same subject in various research fields. In developmental toxicity studies, presence of malformed pups and fetal weight are measured on the pregnant dams exposed to different levels of a toxic substance. Joint analysis of such two outcomes can result in more efficient inferences than separate models for each outcome. Most methods for joint modeling assume a normal distribution as random effects. However, in developmental toxicity studies, the response distributions may change irregularly in location and shape as the level of toxic substance changes, which may not be captured by a normal random effects model. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint model for binary and continuous outcomes. In our model, we incorporate a skewed logit model for the binary outcome to allow the response distributions to have flexibly in both symmetric and asymmetric shapes on the toxic levels. We apply our proposed method to data from a developmental toxicity study of diethylhexyl phthalate.

Formation of Hydrophobic Self-assembled Monolayers on Paper Surface with Silanes (실란화 반응에 의한 종이 표면의 소수성 자기조립 단분자막 형성)

  • Oh, Min-Jeong;Lee, Hyoung;Paik, Ki-Hyon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.1
    • /
    • pp.64-73
    • /
    • 2010
  • This study was conducted to modify the surface properties of papers by formation of hydrophobic self-assembled monolayer(SAM) on paper surface with silanes. A base paper I(0.5% AKD) and base paper II(1.0-1.5% AKD) were reacted with silanes(PFDTES, DMDCS, MODDCS) by immersion method and vapor deposition method. Hydrophobic SAMs(contact angle value>$120^{\circ}C$) were obtained on all papers after treatment with $10^{\mu}l$ PFDTES for 15min, with $50^{\mu}l$ DMDCS for 30min, with $50^{\mu}l$ MODDCS for 300min. When applying PFDTES to paper surface, lower silane concentration and shorter reaction time were required, whereas MODDCS with long alkyl chain required the longest reaction time of 300min. The st$\ddot{o}$ckight sizing degree of silane treated papers were increased between 105sec(base paper I) and 130sec(base paper II). The wet tensile strength of PFDTES-treated base papers(I, II) increased by 10-34% after SAM formation. However, the wet tensile strength of the DMDCS-treated base paper(I) was found to decrease from 0.067kN/m to 0.038kN/m; this may due to the cellulose degrading as a result of generated hydrogen chloride when hydroxyl group of cellulose were reacted with DMDCS. No apparent changes of PPS roughness on silane-treated papers are observed. The ATR-IR spectrum showed absorption peak located at 465 and 1200cm-1 which can be assigned to the Si-O-C asymmetric stretching and Si-O-C bonds, respectively.

Study of Blood Characteristics in Stenosed Artery under Human Body Rotation by Using FSI Method (FSI 기법을 적용한 인체 회전 시 협착 혈관에서의 혈류 특성)

  • Cho, Seong Wook;Kim, Seungwook;Ro, Kyoung Chul;Ryou, Hong Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.449-457
    • /
    • 2013
  • In this study, we performed a numerical analysis to investigate the effect of rotation on the blood flow and arterial wall behavior by using the FSI (fluid-structure interaction) technique. The geometry of the artery included 50% stenosis at the center. To simulate the rotational effect, 2-6 rps of axial velocity was applied to the arterial model. A spiral wave and asymmetric flow occurred due to the stenosis and axial rotation both in the rigid body model and in the FSI model. However, the arterial wall motion caused periodic and transient blood flow changes in the FSI model. The FRZ (fluid recirculation zone) decreased in the FSI model, which is a known predictor for the formation and vulnerability of plaque. Therefore, it is observed that arterial wall motion also influences the generation of the FRZ.