• Title/Summary/Keyword: astronomical observations software

Search Result 38, Processing Time 0.027 seconds

Amplitude Correction Factors of KVN Observations Correlated by DiFX and Daejeon Correlators

  • Lee, Sang-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2015
  • We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22 GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institue (KASI) with Very Long Baseline Array (VLBA) observations at 22 GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C 454.3 and NRAO 512 which are almost unresolved for baselines in a range of 350-477 km. VLBA visibility data of the sources observed with similar baselines as KVN are selected, fringe-fitted, calibrated, and compared in their amplitudes. We found that visibility amplitudes of KVN observations should be corrected by factors of 1.14 and 1.40 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.

  • PDF

DEVELOPMENT OF SYSTEM SOFTWARE FOR ASTRONOMICAL OBSERVATIONS BY CCD PHOTOMETRIC SYSTEM IN ASTRONOMICAL OBSERVATORY OF KYUNG HEE UNIVERSITY (CCD를 이용한 경희대학교 천문대 관측시스템 소프트웨어개발)

  • Jin, Ho;Kim, Gap-Seong
    • Publications of The Korean Astronomical Society
    • /
    • v.9 no.1
    • /
    • pp.101-110
    • /
    • 1994
  • We have investigated intensively an optical telescope with 76cm diameter and CCD camera system in astronomical observatory of Kyung Hee university, in order to maximize instrumental functions of our observational equipments and to construct a more reliable photometric system. And computer softwares AUTO DOME, KH CCD and KH PHO for astronomical image observations and their automatic photometries with high accuracy have been made for observers w use our observational system conveniently and efficiently. Throughout careful examinations of these programs, it has been proved that the observing time by our program is shorter than that by manual operations, so that, fast and accurate observations can be executed with ease. For open cluster NGC 7063 observed with S/N value of 350 or more by KH PHO, we have found the magnitude measurements of 11 object stars would show 0.007 magnitude difference, comparing with magnitude data from IRAF/APPHOT. From automatic photometry of eclipsing binary, AB And observed by our software, total 220 data points with good quality have been acquired during 8 hours and so we could make a better light curve than that obtained from any observational results by domestic photoelectric photometry system.

  • PDF

AUTOMATION OF ASTRONOMICAL TELESCOPE: II. DEVELOPMENT OF TECHNIQUES, EQUIPMENTS AND SOFTWARES FOR REMOTE CONTROL OF TELESCOPE (천체 망원경의 자동화: II. 망원경 원격 조종 기술, 장비 및 소프트웨어의 개발)

  • Kang, Yong-Woo;Lee, Hyeong-Mok
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.57-73
    • /
    • 1996
  • As a continuing effort to develop an automatic control system for small telescope, we developed the software for telescope control and CCD observations under DOS operating system. For accurate pointing of the telescope in short amount of time, we modelled the angular speed of the telescope by aquadratic function of time (constant acceleration) for the first 15 second and then linear function of time (zero acceleration) aftwewards. By changing the telescope speed from 'slew' to 'fine' before the telescope reaches the desired position, we could achieve the accuracy of a few arcsecond. The CCD control software was written for model CCD-10 of CCD Technology. This CCD can be used for guiding purposes. We also conducted the study for remote control of the telescope using telephone line. Although it cannot be used for real observations at the present form, we succeded in remotely pointing the telescope to desired direction. As faster communication technologies become widely available, simple observations can be made remotely in the near future. Finally we report some observational results made with the present control system.

  • PDF

The Effect of Science Classes using Astronomical Observation Software on Scientific Learning Motivation and Academic Achievement of Elementary Students (천체관측 소프트웨어를 활용한 과학수업이 초등학생의 과학 학습 동기와 학업 성취도에 미치는 영향)

  • Song, Yeong-Ho;So, Keum Hyun
    • Journal of Science Education
    • /
    • v.42 no.2
    • /
    • pp.230-241
    • /
    • 2018
  • This study was conducted to see how science classes using astronomical observations software could affect elementary students' scientific learning motivations and academic achievements. For this, 24 sixth graders of G Elementary School were designated as experimental groups to provide classes in which astronomical observation software was used. The experimental treatment period was 4 weeks and the results were as follows. First, elementary science classes that used astronomical observation software were effective in boosting scientific learning motivation. Second, elementary science classes that used astronomical observation software were effective in enhancing academic achievements. From these study results, we could confirm that elementary science classes that used astronomical observation software were effective for elementary school students' motivation and academic achievements.

First Light Results of IGRINS Instrument Control Software

  • Lee, Hye-In;Pak, Soojong;Sim, Chae Kyung;Le, Huynh Anh N.;Jeong, Ueejeong;Chun, Moo-Young;Park, Chan;Yuk, In-Soo;Kim, Kangmin;Pavel, Michael;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2014
  • IGRINS (Immersion GRating Infrared Spectrograph) is a high spectral resolution near-infrared spectrograph that has been developed in a collaboration between the Korea Astronomy & Space Science Institute and the University of Texas at Austin. By using a silicon immersion echelle grating, the size of the fore optics is reduced by a factor of three times and we can make a more compact instrument. One exposure covers the whole of the H- and K-band spectrum with R=40,000. While the operation of and data reduction for this instrument is relatively simple compared to other grating spectrographs, we still need to operate three infrared arrays, cryostat sensors, calibration lamp units, and the telescope during astronomical observations. The IGRINS Instrument Control Software consists of a Housekeeping Package (HKP), Slit Camera Package (SCP), Data Taking Package (DTP), and Quick Look Package (QLP). The SCP will do auto guiding using a center finding algorithm. The DTP will take the echellogram images of the H and K bands, and the QLP will confirm fast processing of data. We will have a commissioning observations in 2014 March. In this poster, we present the performance of the software during the test observations.

  • PDF

Performance of KHU Auto-guiding Package for McDonald 82 inch Telecope (KAP82)

  • Lee, Hye-In;Pak, Soojong;Ji, Tae-Geun;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2015
  • In astronomical observations, stable auto-guiding and accurate target centering capabilities are critical to increase observation efficiency and sensitivity. Recently, Center for the Exploration of the Origin of the Universe (CEOU) has developed SQUEAN (SED camera for QUasars in EArly uNiverse). SQUEAN is installed and had successful observations at the 82 inch Otto Struve Telescope of McDonald Observatory in 2015 February. We have upgraded the existing auto-guiding softwares to KAP82 (KHU Auto-guiding Package for the McDonald 82 inch Telescope). Keeping the original hardware systems and the software algorithms of CAP (CQUEAN Auto-guiding Package), KAP 82 is completely re-written in Visual C++. We developed several center finding algorithms, e.g., 2D-gaussian fitting and weighted mean methods. In this presentation, we compare the auto-guiding performances with these algorithms.

  • PDF

A NEW HARDWARE CORRELATOR IN KOREA: PERFORMANCE EVALUATION USING KVN OBSERVATIONS

  • Lee, Sang-Sung;Oh, Chung Sik;Roh, Duk-Gyoo;Oh, Se-Jin;Kim, Jongsoo;Yeom, Jae-Hwan;Kim, Hyo Ryoung;Jung, Dong-Gyu;Byun, Do-Young;Jung, Taehyun;Kawaguchi, Noriyuki;Shibata, Katsunori M.;Wajima, Kiyoaki
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.125-137
    • /
    • 2015
  • We report results of the performance evaluation of a new hardware correlator in Korea, the Daejeon correlator, developed by the Korea Astronomy and Space Science Institute (KASI) and the National Astronomical Observatory of Japan (NAOJ). We conduct Very Long Baseline Interferometry (VLBI) observations at 22 GHz with the Korean VLBI Network (KVN) in Korea and the VLBI Exploration of Radio Astrometry (VERA) in Japan, and correlated the aquired data with the Daejeon correlator. For evaluating the performance of the new hardware correlator, we compare the correlation outputs from the Daejeon correlator for KVN observations with those from a software correlator, the Distributed FX (DiFX). We investigate the correlated flux densities and brightness distributions of extragalactic compact radio sources. The comparison of the two correlator outputs shows that they are consistent with each other within < 8%, which is comparable with the amplitude calibration uncertainties of KVN observations at 22 GHz. We also find that the 8% difference in flux density is caused mainly by (a) the difference in the way of fringe phase tracking between the DiFX software correlator and the Daejeon hardware correlator, and (b) an unusual pattern (a double-layer pattern) of the amplitude correlation output from the Daejeon correlator. The visibility amplitude loss by the double-layer pattern is as small as 3%. We conclude that the new hardware correlator produces reasonable correlation outputs for continuum observations, which are consistent with the outputs from the DiFX software correlator.

AMPLITUDE CORRECTION FACTORS OF KOREAN VLBI NETWORK OBSERVATIONS

  • LEE, SANG-SUNG;BYUN, DO-YOUNG;OH, CHUNG SIK;KIM, HYO RYOUNG;KIM, JONGSOO;JUNG, TAEHYUN;OH, SE-JIN;ROH, DUK-GYOO;JUNG, DONG-KYU;YEOM, JAE-HWAN
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.229-236
    • /
    • 2015
  • We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22 GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22 GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C 454.3, NRAO 512, OJ 287, BL Lac, 3C 279, 1633+382, and 1510–089, which are almost unresolved for baselines in a range of 350-477 km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We find that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.

Effective Strategy for Precise Orbital and Geodetic Parameter Estimation Using SLR Observations for ILRS AAC

  • Kim, Young-Rok;Oh, Jay;Park, Sang-Young;Park, Chandeok;Park, Eun-Seo;Lim, Hyung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.159.2-159.2
    • /
    • 2012
  • In this study, we propose an effective strategy for precise orbital and geodetic parameter estimation using SLR (Satellite Laser Ranging) observations for ILRS AAC (Associate Analysis Center). The NASA/GSFC GEODYN II software and SLR normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 are utilized for precise orbital and geodetic parameter estimation. Weekly-based precise orbit determination strategy is applied to process SLR observations, and Precise Orbit Ephemeris (POE), TRF (Terrestrial Reference Frame), and EOPs (Earth Orientation Parameters) are obtained as products of ILRS AAC. For improved estimation results, selection strategies of dynamic and measurement models are experimently figured out and configurations of various estimation parameters are also carefully chosen. The results of orbit accuracy assessment of POE and precision analysis of TRF/EOPs for each case are compared with those of existing results. Finally, we find an appropriate strategy for precise orbital and geodetic parameter estimation using SLR observations for ILRS AAC.

  • PDF

Control Software of SQEUAN (SED camera for the QUasars in EArly uNiverse)

  • Lee, Hye-In;Ji, Tae-Geun;Park, Won-Kee;Kuehne, John;Im, Myungshin;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.34.3-35
    • /
    • 2017
  • Spectral energy distribution camera for QUasars in EArly uNiverse (SQUEAN) is a successor of Camera for Quasars in EArly uNiverse (CQUEAN) which was developed by Center for the Exploration of the Origin of the Universe and operated at the 2.1 m Otto Struve Telescope in the McDonald Observatory, USA, since 2010. The software of SQUEAN controls a science camera, a guiding camera, and a filter wheel, and communicates with the telescope control system (TCS). It has been constantly revised and modularized according to the upgrades of the TCS and the hardware changes. Recently we have implemented the stable network communication and the semi-automatic focusing modules to enhance observational convenience. In this presentation we describe the current status of the SQUEAN control software and introduce a software architecture which is optimized on efficient astronomical observations.

  • PDF